Advertisement

Journal of Genetics

, Volume 51, Issue 2, pp 363–372 | Cite as

Wild cabbages and the effects of cultivation

  • R. Ruggles gates
Article

Summary

The wild cabbage,Brassica oleracea L., on the coasts of western Europe, shows enormous increase in size when taken into cultivation. It shows much variation, which is correlated with its self-sterility. It has the potentiality for producing, since its cultivation began, perhaps early in the Neolithic, kale, brussels sprouts and cabbage. But the historical evidence favours the derivation of cabbage and kale from Italy in pre-Roman times. It would be interesting to compare the wildB. oleracea of Italy (B. Robertiana J. Gay) with the species as found on the coasts of western Europe.

The middle and eastern Mediterranean contains several species nearly related toB. oleracea. Probably cauliflower and broccoli came fromB, cretica, the most eastern of these; and such cultigens as kohlrabi may have been derived from one of the middle Mediterranean species. The various cultivated forms appear therefore to have had a polyphyletic origin.

Enormous increase in size is a feature ofB. oleracea when introduced into cultivation from a chalk soil. The F1 from cabbage x kale is closely similar and is apparently a case of reversion to the ancestral type on crossing two of the derivatives.

Keywords

Pollen Tube Polyi Rosette Leave Brussels Sprout Wild Beet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, Z. (1936). Self-sterility inEruca sativa Lam.J. Genet.32, 257–76.CrossRefGoogle Scholar
  2. Bailey, L. H. (1922). Brassicae cultorum.Gentes Herbarum,1, 53–108.Google Scholar
  3. Bailey, L. H. (1930). Brassicae cultorum. II.Gentes Herbarum,2, 211–67.Google Scholar
  4. Bailey, L. H. (1940). Certain noteworthy Brassicas.Gentes Herbarum,4, 319–30.Google Scholar
  5. Bhaduri, P. N. &Bose, P. C. (1947). Cyto-genetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation.J. Genet.48, 237–56.CrossRefPubMedGoogle Scholar
  6. De Candolle, A. P. (1824). Memoir on the different species, races, and varieties of the genusBrassica (cabbage) and of the genera allied to it, which are cultivated hi Europe.Trans. Hort. Soc. Lond.5, 1–43.Google Scholar
  7. De Candolle, Alph. (1896). Origine des Plantes Gultivées, 4th ed. Paris.Google Scholar
  8. Catcheside, D. G. (1934). The chromosomal relationships in the swede and turnip groups ofBrassica.Ann. Bot., Lond.,48, 601–33.Google Scholar
  9. Frandsen, K. J. (1947). The experimental formation ofBrassica napus L. var oleifera DC. andB. carinata Braun.Dansh bot. Ark.12, no. 7.Google Scholar
  10. Frandsen, H. N. &Winge, O. (1932).Brassica napocampestris a new constant amphidiploid species hybrid.Hereditas, Lund,16, 212–18.Google Scholar
  11. Gates, R. R. (1910). Abnormalities inOenothera.Rep. Mo. Bot. Gdns,21, 175–83.Google Scholar
  12. Gates, R. R. (1950). Genetics and taxonomy of the cultivated Brassicas and their wild relatives.Bull. Torr. Bot. Club,77, 19–28.CrossRefGoogle Scholar
  13. Hegi, G. (1913-19).Illustrierte Flora von Mittel-Europa,4, 242–52.Google Scholar
  14. Howard, H. W. (1938). The chromosome number of the swede,Brassica napus L. J. Genet.35, 383–6.CrossRefGoogle Scholar
  15. Kakizaki, Y. (1930). Studies on the genetics and physiology of self- and cross-incompatibility in the common cabbage (Brassica oleracea L. var.capitala L.).Jap. J. Bot.5, 133–208.Google Scholar
  16. Kristofferson, K. B. (1924). Contributions to the genetics ofBrassica oleracea.Hereditas, Lund,5, 297–364.Google Scholar
  17. Kristofferson, K. B. (1927). Contributions to the genetics ofBrassica, oleracea. II.Hereditas, Lund,9 343–8.Google Scholar
  18. Kuzmina, N. E. (1927). On the chromosomes ofBeta vulgaris L. (Russian with English summary.)Bull. Appl. Bot. Genet. Pl. Breed.17, 241–52.Google Scholar
  19. Lamprecht, H. (1939). Translokation, Genspaltung und Mutation beiPisum.Hereditas, Lund,25 431–58.CrossRefGoogle Scholar
  20. Lamprecht, H. (1948). Neue und bisher bekannte Ergebnisse der KreuzungPhaseolus vuglaris L. xcoccineus L. und reziprok.Agric. Hort. Genet.6, 83–145.Google Scholar
  21. Malinowski, E. (1921). Sur les hybrides du chou pommé avec le chou frisé.Mém. Inst. Génét. Varsovie,1.Google Scholar
  22. Malinowski, E. (1929). Genetics ofBrassica.Bibliogr. genet.5, 1–26.Google Scholar
  23. Musil, A. F. (1948). Distinguishing the species ofBrassica by their seed.Misc. Publ. U.S. Dep. Agric. no. 643, pp. 35.Google Scholar
  24. Onno, M. (1933). Die Wildformen aus der Verwandtschaftskreis ‘B. oleracea L.’Öst. Bot. Z.82, 309–34.CrossRefGoogle Scholar
  25. Pearson, O. H. (1933). Study of the life history ofBrassica oleracea.Bot. Gaz.94 534–50.CrossRefGoogle Scholar
  26. Pease, M. S. (1926). Genetic studies inBrassica oleracea.J. Genet.16, 363–85.CrossRefGoogle Scholar
  27. Prell, H. (1921). Das Problem der Unbefruchtbarkeit.Naturw. Wschr. N.E.20, 440–6.Google Scholar
  28. Rothmaler, W. (1946). Artentstehung in historischer Zeit, am Beispiel der Unkräuter des Kulturleins (Linum usitatissimum).Züchter,17/18, 89–92.CrossRefGoogle Scholar
  29. Sansome, E. R. (1932). Segmental interchange inPisnm sativum.Cytologia, Tokyo,3, 200–19.Google Scholar
  30. Schwanitz, F. (1950). Der Gigascharakter der Kulturpflanzen und seine Bedeutung für die Polyploidiezüchtung.Züchter,21, 65–75.CrossRefGoogle Scholar
  31. Shimotomai, N. (1925). A karyological study ofBrassica.Bot. Mag., Tokyo,39, 122–7.Google Scholar
  32. Sikka, S. M. (1940). Cytogenetics ofBrassica hybrids and species.J. Genet.40, 441–509.CrossRefGoogle Scholar
  33. Sinclair, Geo. (1824). On the Woburn perennial kale, a variety ofBrassica oleracea acephala fimbriata.Trans. Hort. Soc. Lond.5, 297–301.Google Scholar
  34. Sinskaya, E. N. (1927). Geno-systematical investigations of cultivatedBrassica.Bull. Appl. Bot.17, 1–166. (Russian with English summary.)Google Scholar
  35. Sinskaya, E. N. (1928). The oleiferous plants and root crops of the family Cruciferae.Bull. Appl. Bot.193, 1–648. (Russian with English summary.)Google Scholar
  36. Stout, A. B. (1922). Cyclic manifestation of sterility inBrassica pelcinensis andB. chinensis.Bot. Gaz.73, 110–32.CrossRefGoogle Scholar
  37. Stout, A. B. (1938). The genetics of incompatibilities in homomorphic flowering plants.Bot. Rev.4, 275–369.CrossRefGoogle Scholar
  38. Sutton, A. W. (1908).Brassica crosses.J. Linn. Soc. (Bot.),38, 337–49.CrossRefGoogle Scholar
  39. Winge, Ö. (1917). The chromosomes. Then numbers and general importance.C. R. Lab. Carlsberg,13, 131–275.Google Scholar

Copyright information

© Indian Academy of Sciences 1953

Authors and Affiliations

  • R. Ruggles gates
    • 1
  1. 1.Biological LaboratoriesHarvard UniversityUK

Personalised recommendations