The Mathematical Intelligencer

, Volume 1, Issue 3, pp 151–161 | Cite as

Cauchy and the continuum

The significance of non-standard analysis for the history and philosophy of mathematics
  • Imre Lakatos
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, N. H. [1826a]: ’Untersuchungen über die Reihe 1 +m/1x +m·m − 1/1 ·2x 2 + ...,Journal für die Reine und Angewandte Mathematik, 1, pp. 311–339.MATHCrossRefGoogle Scholar
  2. Agassi, J. [1963]: Towards an Historiography of Science, Wesleyan University Press.Google Scholar
  3. Baumann, J. J. [1869]:Die Lehren von Zeit, Raum und Mathematik, volume 2. Berlin: G. Reiner.Google Scholar
  4. Beck, L. J. [1952]:The Method of Descartes: A Study of the Regulae. Oxford: Clarendon Press.MATHGoogle Scholar
  5. Bell, E. T. [1937]:Men of Mathematics. London: Victor Gollancz.MATHGoogle Scholar
  6. Bell, E. T. [1940]:The Development of Mathematics. New York: McGraw-Hill.Google Scholar
  7. Bourbaki, N. [1940b]:Topologie Générale. Paris: Hermann.MATHGoogle Scholar
  8. Bourbaki, N. [1960]:Eléments ďHistoire des Mathématiques. Paris: Hermann.Google Scholar
  9. Bover, C.B. [1949]:The Concepts of the Calculus. New York: Columbia University Press.Google Scholar
  10. Cajori, F. [1919]:A History of Mathematics. 2nd edition. New York and London: Macmillan, 1961.Google Scholar
  11. Cauchy, A. L. [1821]:Cours ďAnalyse de ľEcole Royale Polytechnique. Paris: de Bure.Google Scholar
  12. Cauchy, A. L. [1823]:Résumé des leçons sur le calcul Infinitésimal. Paris: de Bure. InOeuvres Complètes, Séries 2, volume 4, pp. 5–261.Google Scholar
  13. Cauchy, A. L. [1853]: ’Note sur les séries convergentes dont les Divers Terms sont des Functions Continues ďune Variable Réelle ou Imaginaire entre des Limites Données’,Comptes Rendus des Séances des ľAcadémie des Sciences, 36, pp. 454–459.Google Scholar
  14. Chwistek,L. [1948]:The Limits of Science. London: Kegan Paul.Google Scholar
  15. Dirichlet, P. L. [1829]:’Sur la Convergence des Séries Trigonométriques que Servent à Représenter une Function Arbitraire entre des Limites Données’,Journal für die Reine und Angewandte Mathematik, 4, pp. 157–169.MATHCrossRefGoogle Scholar
  16. Duhem, P. [1906] :La Théorie Physique; son Objet, sa Structure, English translation of the second (1914) edition:The Aim and Structure of Physical Theory. Princeton University Press, 1954.Google Scholar
  17. Fourier, J. [1822]:Théorie analytique de la Chaleur. Translated into English asThe Analytical Theory of Heat. New York: Dover.Google Scholar
  18. Frayne, T., Morel, A. C. and Scott, D. S. [1962–3]: ’Reduced Direct Products’,Fundamenta Mathematica, 51, pp. 195–228.MathSciNetGoogle Scholar
  19. Grattan-Guinness, I. and Ravetz, J. R. [1972]:Joseph Fourier, 1768–1830. Cambridge, Mass.: M.I.T. Press.MATHGoogle Scholar
  20. Hardy, G. H. [1918]: ’Sir George Stokes and the Concept of Uniform Convergence’,Proceedings of the Cambridge Philosophical Society, 18/19, pp. 148–156.Google Scholar
  21. Houel, J. [1878]:Calcul Infinitesimal, volume 1. Paris.Google Scholar
  22. Klein, F. [1908]:Elementary Mathematics from an Advanced Standpoint. New York: Dover.Google Scholar
  23. Kreisel, G. [1956–7]: ’Some Uses of Metamathematics’,British Journal for the Philosophy of Science, 7, pp. 161–173.CrossRefGoogle Scholar
  24. Kreisel, G. and Krivine, J. L. [1967]:Elements of Mathematical Logic. Amsterdam: North Holland.MATHCrossRefGoogle Scholar
  25. Lakatos, I. [1963–4]: ’Proofs and Refutations’,British Journal for the Philosophy of Science, 14, pp. 1–25, 120–139, 221–243, 296, 342. Republished in revised form as part of Lakatos [1976c].CrossRefMathSciNetGoogle Scholar
  26. Lakatos, I. [1976c]:Proofs and Refutations: The Logic of Mathematical Discovery. Edited by J. Worrall and E. G. Zahar. Cambridge University Press.Google Scholar
  27. Leibniz, G. W. F. [1678]: ’Letter to Conring, 19 March’, in L. Loemker (ed. ) :Leibniz’s Philosophical Papers and Letters, pp. 186–191. Dordrecht: Reidel, 1967.Google Scholar
  28. Lhuilier, S.A.J. [1787]:Exposition Elémentaire des Principes des Calculs Supérieurs. Berlin: G. J. Decker.Google Scholar
  29. Pringsheim, A. [1916]: ’Grundlagen der Allgemeinen Functionen lehre’, In M. Burkhardt, W. Wutinger and R. Fricke (eds.):Encyklopädie der Mathematischen Wissenschaften, 2, Erste Teil, Erste Halbband, pp. 1–53. Leipzig: Teubner.Google Scholar
  30. Robinson, A. [1966]:Non-Standard Analysis. Amsterdam: North Holland.MATHGoogle Scholar
  31. Robinson, A. [1967]: ’The Metaphysics of the Calculus’, in I. Lakatos (ed): [1967], pp. 28–40.Google Scholar
  32. Russell, B. A. W. [1948]:Human Knowledge: Its Scope and Limits. London: George Allen and Unwin.Google Scholar
  33. Rychlik, K. [1962]:Théorie der Reellen Zahlen im Bolzano’s Handschriftlichen Nachlasse. Prague: Verlag der Tschechoslowakischen Akademie der Wissenschaften.Google Scholar
  34. Sacks, G. E. [1972]: ’Differential Closure of a Differential Fielď,Bulletin of the American Mathematical Society, 78, pp. 629–634.MATHCrossRefMathSciNetGoogle Scholar
  35. Seidel, P. L. [1847]: ’Note über eine Eigenschaft der Reihen, welche Discontinuirliche Functionen daisteilen’,Abhandlungen der Mathematik -Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften, 5, pp. 381–394.Google Scholar
  36. Smith, D. E. [1929]:A Scource Book in Mathematics. New York: Dover, 1959.Google Scholar
  37. Whewell, W. [1858]:History of Scientific Ideas, volume 1. (Part One of the third edition ofThe Philosophy of the Inductive Sciences.)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1978

Authors and Affiliations

  • Imre Lakatos

There are no affiliations available

Personalised recommendations