The Mathematical Intelligencer

, Volume 4, Issue 1, pp 33–37 | Cite as

The invariant subspace problem

  • Heydar Radjavi
  • Peter Rosenthal


Hilbert Space Banach Space Invariant Subspace Compact Operator Subnormal Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Agler: An invariant subspace theorem. Bull. Amer. Math. Soc. 1 (1979), 425–427CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Constantin Apostol: Invariant subspaces for subquasiscalar operators. J. Operator Theory 3 (1980), 159–164zbMATHMathSciNetGoogle Scholar
  3. 3.
    C. Apostol, C. Foias, D. Vioculescu: Some results on nonquasitriangular operators IV. Rev. Roumaine Math. Pures Appl. 18(1973), 487–514zbMATHGoogle Scholar
  4. 4.
    N. Aronszajn, K. T. Smith: Invariant subspaces of completely continuous operators. Ann. of Math. 60 (1954), 345–350CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    W.B. Arveson: A density theorem for operator algebras. Duke Math. J. 34 (1967), 635–647CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    W. B. Arveson, J. Feldman: A note on invariant subspaces. Michigan Math. J. 15 (1968), 60–64Google Scholar
  7. 7.
    C. A. Berger: Sufficiently high powers of hypernormal operators have rationally invariant subspaces. Integral Equations and Operator Theory 1 (1979), 444–447CrossRefGoogle Scholar
  8. 8.
    C. A. Berger: Intertwined operators and the Pincus principal function. Integral Equations and Operator Theory 4 (1981), 1–9CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    A.R. Bernstein, A. Robinson: Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos. Pacific J. Math. 16 (1966), 421–431CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Scott Brown: Invariant subspaces for subnormal operators. Integral Equations and Operator Theory 1 (1978), 310–333CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    S. Brown, B. Chevreau, C. Pearcy: Contractions with rich spectrum have invariant subspaces. J. Operator Theory 1 (1979), 123–136zbMATHMathSciNetGoogle Scholar
  12. 12.
    J. B. Conway, R. F. Olin: A functional calculus for subnormal operators II. Memoirs of the A.M.S. 10, No. 184 (1977)Google Scholar
  13. 13.
    John Daughtry: An invariant subspace theorem. Proc. Amer. Math. Soc. 49 (1975), 267–268zbMATHMathSciNetGoogle Scholar
  14. 14.
    A. M. Davie: The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261–266CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    A. M. Davie: Invariant subspaces for Bishop’s operators. Bull. Lond. Math. Soc. 6 (1974), 343–348CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    R. G. Douglas, Carl Pearcy: Invariant subspaces of non-qua- sitriangular operators. In: Proceedings of a Conference on Operator Theory (Lecture Notes in Mathematics, Vol. 345). Springer, Berlin Heidelberg New York, 1973, pp. 13–57CrossRefGoogle Scholar
  17. 17.
    P. Enfio: A counterexample to the approximation problem in Banach spaces. Acta Math. 130 (1973), 309–317CrossRefMathSciNetGoogle Scholar
  18. 18.
    P. Enfio: On the invariant subspace problem in Banach spaces. Seminaire Maurey-Schwartz 1975-1976, Exposes No. XIV-XVGoogle Scholar
  19. 19.
    C. K. Fong, E. Nordgren, M. Radjabalipour, H. Radjavi, P. Rosenthal: Extensions of Lomonosov’s invariant subspace theorem. Acta Sci. Math. (Szeged) 41 (1979), 55–62zbMATHGoogle Scholar
  20. 20.
    D. Hadwin, E. Nordgren, H. Radjavi, P. Rosenthal: An operator not satisfying Lomonosov’s hypothesis. J. Functional Analysis 38 (1980), 410–415CrossRefzbMATHGoogle Scholar
  21. 21.
    P.R. Halmos: Normal dilations and extensions of operators. Summa Brasil. Math. 2 (1950), 125–134MathSciNetGoogle Scholar
  22. 22.
    P. R. Halmos: Invariant subspaces of polynomially compact operators. Pacific J. Math. 16 (1966), 433–437CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    P.R. Halmos: Quasitriangular operators. Acta Sci. Math. (Szeged) 29 (1968), 283–293zbMATHMathSciNetGoogle Scholar
  24. 24.
    P.R. Halmos: Ten years in Hilbert space. Integral Equations and Operator Theory 2 (1979), 529–564CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    H. Helson:Lectures on Invariant Subspaces. Academic Press, New York, 1964zbMATHGoogle Scholar
  26. 26.
    N. Jacobson:Lectures in Abstract Algebra. Vol. II.Linear Algebra, Springer, New York, 1975Google Scholar
  27. 27.
    R.V. Kadison: On the orthogonalization of operator representations. Amer. J. Math. 78 (1955), 600–621CrossRefMathSciNetGoogle Scholar
  28. 28.
    H. Kim. C. Pearcy, A. Shields: Rank-one commutators and hyperinvariant subspaces. Michigan Math. J. 22 (1975), 193–194MathSciNetGoogle Scholar
  29. 29.
    H. Kim, C. Pearcy, A. Shields: Sufficient conditions for rank-one commutators and hyperinvariant subspaces. Michigan Math. J. 23 (1976), 235–243CrossRefMathSciNetGoogle Scholar
  30. 30.
    K. Kitano: Invariant subspaces of some non-self-adjoint operators. Tohoku Math. J. 20 (1968), 313–322CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    K.-H. Körber: Die invarianten Teilräume der stetigen Endomorphismen von w. Math. Ann. 182 (1969), 95–103CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    M. S. Livsic: On the spectral resolution of linear nonselfadjoint operators. Amer. Math. Soc. Transl. (2) 5 (1957), 67–114MathSciNetGoogle Scholar
  33. 33.
    V. J. Lomonosov: Invariant subspaces for operators commuting with compact operators. Funkcional Anal i. Prilozen 7 (1973), 55–56 (Russian); Functional Anal, and Appl. 7 (1973), 213-214 (English)MathSciNetGoogle Scholar
  34. 34.
    V. I. Macaev: On a class of completely continuous operators. Soviet Math. Dokl. 2 (1961), 972–975Google Scholar
  35. 35.
    E. Nordgren, H. Radjavi, P. Rosenthal: A geometric equivalent of the invariant subspace problem. Proc. Amer. Math. Soc. 61 (1976), 66–68CrossRefMathSciNetGoogle Scholar
  36. 36.
    C. Pearcy, A. L. Shields: A survey of the Lomonosov technique in the theory of invariant subspaces, in Topics in Operator Theory, Math. Surveys 13. AMS, Providence, 1974, 221–228Google Scholar
  37. 37.
    V. P. Potapov: The multiplicative structure of J-contractive matrix functions. Amer. Math. Soc. Transl. 15 (1960) 131–242zbMATHMathSciNetGoogle Scholar
  38. 38.
    Heydar Radjavi, Peter Rosenthal:Invariant Subspaces. Springer, Berlin Heidelberg New York, 1973CrossRefzbMATHGoogle Scholar
  39. 39.
    Peter Rosenthal: Some recent results on invariant subspaces. Canad. Math. Bull. 19 (1976), 303–313CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    D. E. Sarason: Weak-star density of polynomials, J. für Reine Angew. Math. 252 (1972), 1–15zbMATHMathSciNetGoogle Scholar
  41. 41.
    J. T. Schwartz: Subdiagonalization of operators in Hilbert space with compact imaginary part. Comm. Pure Appl. Math. 15(1962), 159–172CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    A. L. Shields: A note on invariant subspaces. Mich. Math. J. 17(1970),231–233CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Joseph G. Stampili: An extension of Scott Brown’s invariant subspace theorem: K-spectral sets. J. Operator Theory 3(1980)3–21MathSciNetGoogle Scholar
  44. 44.
    D. Voiculescu: Some extensions of quasitriangularity. Rev. Roumaine de Math. pures et appl. 18 (1973), 1439–1456zbMATHMathSciNetGoogle Scholar
  45. 45.
    J. Wermer: The existence of invariant subspaces. Duke Math. J. 19(1952),615–622CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1982

Authors and Affiliations

  • Heydar Radjavi
    • 1
  • Peter Rosenthal
    • 2
  1. 1.Department of MathematicsDalhousie UniversityHalifaxCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations