Advertisement

The Mathematical Intelligencer

, Volume 3, Issue 2, pp 59–65 | Cite as

The Classification of the Finite Simple Groups

  • Michael Aschbacher
Article

Keywords

Finite Group Simple Group Prime Order Component Type Chevalley Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Alperin, R. Brauer, D. Gorenstein: Finite groups with quasidihedral and wreathed Sylow 2-groups,Trans. AMS 151 (1970), 1–261zbMATHMathSciNetGoogle Scholar
  2. 2.
    M. Aschbacher: Finite groups with a proper 2-generated core,Trans. AMS 197 (1974), 87–112zbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Aschbacher: On finite groups of component type,Illinois J. Math. 19 (1975), 87–115zbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Aschbacher: A characterization of Chevalley groups over fields of odd order,Ann. Math. 106(1977), 353–468CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M. Aschbacher: Thin finite simple groups,J. Alg. 54 (1978), 50–152CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    M. Aschbacher:The Finite Simple Groups and their Classification, Yale University Press, New Haven 1980zbMATHGoogle Scholar
  7. 7.
    M. Aschbacher, G Seitz: On groups with a standard component of known type,Osaka J. Math. 13 (1976), 439–482zbMATHMathSciNetGoogle Scholar
  8. 8.
    H. Bender: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punktfestlasst, J. Alg. 17 (1971), 527–554CrossRefzbMATHGoogle Scholar
  9. 9.
    E. Bombieri: Thompson’s Problem (a2 = 3),Inventiones Math. 58(1980) 77–100CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Brauer, K. Fowler: On groups of even order,Ann. Math. 62(1955)565–583CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    C. Chevalley: Sur certain groupes simples,Tohoku Math. J. 7(1955), 14–66CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Collins, Ed.:Finite Simple Groups, II, Academic Press, London 1980zbMATHGoogle Scholar
  13. 13.
    B.Cooperstein, G.Mason, Ed.:Proceedings of Symposia in Pure Mathematics 37 (1980)Google Scholar
  14. 14.
    . W. Feit: The theory of finite groups in the twentieth century,History of Algebra Google Scholar
  15. 15.
    W. Feit, J. Thompson: Solvability of groups of odd order,Pacific J. Math. 13 (1963), 775–1029CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    R. Foote: Finite groups with components of 2-rank 1, I, II,J. Alg. 41 (1976), 16–57CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    G. Glauberman: On solvable signalizer functors in finite groups,J. LondonMath. Soc. 33 (1976), 1–27zbMATHMathSciNetGoogle Scholar
  18. 18.
    D. Goldschmidt: Solvable signalizer functors in finite groups,J. Alg. 21 (1972), 137–148CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    D. Gorenstein: The classification of the finite simple groups,Bull. AMS 1 (1979), 43–199CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    D. Gorenstein, K. Harada: Finite groups whose 2-subgroups are generated by at most 4 elements,Memoirs AMS 147 (1974), 1–464MathSciNetGoogle Scholar
  21. 21.
    D. Gorenstein, J. Walter: The characterization of finite groups with dihedral Sylow 2-subgroups,J. Alg. 2 (1965), 85–151,218-270,354-393CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    D. Gorenstein, J. Walter: Centralizers of involutions in balanced groups,J. Alg. 20 (1972), 284–319CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    A. MacWilliams: On 2-groups with no normal Abclian subgroups of rank 3 and and their occurrence as Sylow 2-subgroups of finite simple groups,Trans. AMS 150 (1970), 345–408zbMATHMathSciNetGoogle Scholar
  24. 24.
    R. Ree: A family of simple groups associated with the simple Lie algebraF 4, American J. Math. 83(1961), 401–420CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    R. Ree: A family of simple groups associated with the simple Lie algebraG 2, American J. Math. 83 (1961), 432–462CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    G. Seitz: Chevalley groups as standard subgroups, I, II, III,Illinois J. Math. 23 (1979), 36–57, 517-533, 554-578zbMATHMathSciNetGoogle Scholar
  27. 27.
    S. Smith: Large extraspecial subgroups of widths 4 and 6,J. Alg. 58(1979), 251–281CrossRefzbMATHGoogle Scholar
  28. 28.
    R. Solomon: Standard components of alternating type, I, II,J. Alg. 41 (1976), 496–514, 47(1977), 162-179CrossRefzbMATHGoogle Scholar
  29. 29.
    R. Steinberg: Variations on a theme of Chevalley,Pac. J. Math. 9 (1959), 875–891CrossRefzbMATHGoogle Scholar
  30. 30.
    J. Thompson: Nonsolvable finite groups all of whose local subgroups are solvable, I,Bull. AMS. 74 (1968), 383–437, II-VI,Pacific J. Math. 33 (1970), 451-536, 39 (1971), 483-534, 48 (1973), 511-592, 50 (1974), 215-297, 51 (1974), 573-630CrossRefzbMATHGoogle Scholar
  31. 31.
    F. Timmesfeld: Finite groups in which the generalized Fitting group of the centralizer of some involution is extraspecial,Ann. Math. 107 (1978), 297–369CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1980

Authors and Affiliations

  • Michael Aschbacher
    • 1
  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations