Canadian Journal of Anesthesia

, Volume 53, Issue 8, pp 781–794

Prediction of massive blood transfusion in cardiac surgery

  • Keyvan Karkouti
  • Rachel O’Farrell
  • Terrence M. Yau
  • W. Scott Beattie
  • Reducing Bleeding in Cardiac Surgery (RBC) Research Group
Cardiothoracic Anesthesia, Respiration and Airway



In cardiac surgery with cardiopulmonary bypass (CPB), excessive blood loss requiring the transfusion of multiple red blood cell (RBC) units is a common complication that is associated with significant morbidity and mortality. The objective of this study was to develop a prediction rule for massive blood transfusion (MBT) that could be used to optimize the management of, and research on, at-risk patients.


Data were collected prospectively over the period from 2000 to 2005, on patients who underwent surgery with CPB at one hospital. Patients who received ≥ five units of RBC within one day of surgery were classified as MBT. Logistic regression was used to appropriately select and weigh perioperative variables in the prediction rule, which was developed on the initial 60% of the sample and validated on the remaining 40%.


Of the 10,667 patients included, 925 (8.7%) had MBT. The clinical prediction rule included 12 variables (listed in order of predictive value: CPB duration, preoperative hemoglobin concentration, body surface area, nadir CPB hematocrit, previous sternotomy, preoperative shock, preoperative platelet count, urgency of surgery, age, surgeon, deep hypothermic circulatory arrest, and type of procedure) and was highly discriminative (c-index = 0.88). In the validation set, those classified as low-, moderate-, and high-risk by a simple risk score derived from the prediction rule had a 5%, 27%, and 58% chance of MBT, respectively.


A clinical prediction rule was developed that accurately identified patients at low-risk or high-risk for MBT. Studies are needed to determine the external generalizability and clinical utility of the prediction rule.

La prédiction d’une transfusion massive en cardiochirurgie



En cardiochirurgie avec circulation extracorporelle (CEC), une perte de sang excessive exigeant la transfusion de multiples unités de culots globulaires (CG) est une complication fréquente associée à une morbidité et à une mortalité significatives. L’objectifde notre étude était d’élaborer une règle de prédiction pour la transfusion massive (TM) qui pourrait être utilisée pour optimaliser la recherche sur les patients à risque, et leur traitement.


Les données prospectives ont été recueillies sur les patients qui ont subi une opération avec CEC dans un hôpital entre 2000 et 2005. Les patients ayant reçu ≥ cinq unités de CG en moins d’un jour postopératoire ont été classés comme TM. La régression logistique a permis de choisir et pondérer convenablement les variables périopératoires de la règle de prédiction qui a été élaborée d’après les premiers 60 % de l’échantillon et validée sur les 40 % restant.


Des 10 667 patients inclus, 925 (8,7 %) avaient eu une TM. La règle de prédiction clinique incluait 12 variables (présentées par ordre de valeur prédictive: durée de la CEC, concentration d’hémoglobine préopératoire, surface corporelle, hématocrite minimal de la CEC, sternotomie antérieure, choc


  1. 1.
    Unsworth-White MJ, Herriot A, Valencia O, et al. Resternotomy for bleeding after cardiac operation: a marker for increased morbidity and mortality. Ann Thorac Surg 1995; 59:664–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations. J Thorac Cardiovasc Surg 1996; 111:1037–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Crabtree TD, Codd JE, Fraser VJ, Bailey MS, Olsen MA, Damiano RJ Jr. Multivariate analysis of risk factors for deep and superficial sternal infection after coronary artery bypass grafting at a tertiary care medical center. Semin Thorac Cardiovasc Surg 2004; 16:53–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Karkouti K, Wijeysundera DN, Yau TM, et al. The independent association of massive blood loss with mortality in cardiac surgery. Transfusion 2004; 44:1453–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Karkouti K, Cohen MM, McCluskey SA, Sher GD. A multivariable model for predicting the need for blood transfusion in patients undergoing first-time elective coronary bypass graft surgery. Transfusion 2001; 41:1193–203.PubMedCrossRefGoogle Scholar
  6. 6.
    Surgenor DM, Churchill WH, Wallace EL, et al. The specific hospital significantly affects red cell and component transfusion practice in coronary artery bypass graft surgery: a study of five hospitals. Transfusion 1998; 38:122–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Surgenor DM, Churchill WH, Wallace EL, et al. Determinants of red cell, platelet, plasma, and cryoprecipitate transfusions during coronary artery bypass graft surgery: the Collaborative Hospital Transfusion Study. Transfusion 1996; 36:521–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Bilfinger TV, Conti VR. Blood conservation in coronary artery bypass surgery: prediction with assistance of a computer model. Thorac Cardiovasc Surg 1989; 37:365–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Despotis GJ, Filos KS, Zoys TN, Hogue CW Jr,Spitznagel E, Lappas DG. Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements: a multivariate analysis in cardiac surgical patients. Anesth Analg 1996; 82:13–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Arora RC, Legare JF, Buth KJ, Sullivan JA, Hirsch GM. Identifying patients at risk of intraoperative and postoperative transfusion in isolated CABG: toward selective conservation strategies. Ann Thorac Surg 2004; 78:1547–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Cosgrove DM, Loop FD, Lytle BW, et al. Determinants of blood utilization during myocardial revascularization. Ann Thorac Surg 1985; 40:380–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Moskowitz DM, Klein JJ, Shander A, et al. Predictors of transfusion requirements for cardiac surgical procedures at a blood conservation center. Ann Thorac Surg 2004;77:626–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Covin R, O’Brien M, Grunwald G, et al. Factors affecting transfusion of fresh frozen plasma, platelets, and red blood cells during elective coronary artery bypass graft surgery. Arch Pathol Lab Med 2003; 127:415–23.PubMedGoogle Scholar
  14. 14.
    Chu MW, Wilson SR, Novick RJ, Stitt LW, Quantz MA. Does clopidogrel increase blood loss following coronary artery bypass surgery? Ann Thorac Surg 2004; 78:1536–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Dial S, Delabays E, Albert M, et al. Hemodilution and surgical hemostasis contribute significantly to transfusion requirements in patients undergoing coronary artery bypass. J Thorac Cardiovasc Surg 2005; 130:654–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Karthik S, Grayson AD, McCarron EE, Pullan DM, Desmond MJ. Reexploration for bleeding after coronary artery bypass surgery: risk factors, outcomes, and the effect of time delay. Ann Thorac Surg 2004; 78:527–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Dacey LJ, Munoz JJ, Baribeau YR, et al. Reexploration for hemorrhage following coronary artery bypass grafting. Incidence and risk factors. Arch Surg 1998; 133:442–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferraris VA, Gildengorin V. Predictors of excessive blood use after coronary artery bypass grafting. A multivariate analysis. J Thorac Cardiovasc Surg 1989; 98:492–7.PubMedGoogle Scholar
  19. 19.
    Parr KG, Patel MA, Dekker R, et al. Multivariate predictors of blood product use in cardiac surgery. J Cardiothorac Vasc Anesth 2003; 17:176–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Goodnough LT, Soegiarso RW, Geha AS. Blood lost and blood transfused in coronary artery bypass graft operation as implications for blood transfusion and blood conservation strategies. Surg Gynecol Obstet 1993; 177:345–51.PubMedGoogle Scholar
  21. 21.
    Hall TS, Brevetti GR, Skoultchi AJ, Sines JC, Gregory P, Spotnitz AJ. Re-exploration for hemorrhage following open heart surgery differentiation on the causes of bleeding and the impact on patient outcomes. Ann Thorac Cardiovasc Surg 2001; 7:352–7.PubMedGoogle Scholar
  22. 22.
    Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg 2005; 129:391–400.PubMedCrossRefGoogle Scholar
  23. 23.
    Karkouti K, Beattie WS, Wijeysundera DN, et al. Recombinant factor VIIa (rF-VIIa) for intractable blood loss after cardiac surgery: a propensity score-matched case-control analysis. Transfusion 2005; 45:26–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Karkouti K, Djaiani G, Borger MA, et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann Thorac Surg 2005; 80:1381–7.PubMedCrossRefGoogle Scholar
  25. 5.
    Feinstein AR. Multiple logistic regression.In: Feinstein AR (Ed.). Multivariable Analysis: An Introduction. New Haven: Yale University Press; 1996: 297–330.Google Scholar
  26. 26.
    Whitlock R, Crowther MA, Ng HJ. Bleeding in cardiac surgery: its prevention and treatment — an evidence-based review. Crit Care Clin 2005; 21:589–610.PubMedCrossRefGoogle Scholar
  27. 27.
    Diprose P, Herbertson MJ, O’Shaughnessy D, Gill RS. Activated recombinant factor VII after cardiopulmonary bypass reduces allogeneic transfusion in complex non-coronary cardiac surgery: randomized double-blind placebo-controlled pilot study. Br J Anaesth 2005; 95:596–602.PubMedCrossRefGoogle Scholar
  28. 28.
    Brecher ME, Monk T, Goodnough LT. A standardized method for calculating blood loss. Transfusion 1997; 37:1070–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Woodman RC, Harker LA. Bleeding complications associated with cardiopulmonary bypass. Blood 1990; 76:1680–97.PubMedGoogle Scholar
  30. 30.
    Despotis GJ, Goodnough LT. Management approaches to platelet-related microvascular bleeding in cardiotho-racic surgery. Ann Thorac Surg 2000; 70:S20–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Green JA, Spiess BD. Current status of antifibrinolytics in cardiopulmonary bypass and elective deep hypothermic circulatory arrest. Anesthesiol Clin North America 2003; 21:527–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Mora Mangano CT, Neville MJ, Hsu PH, Mignea I, King J, Miller DC. Aprotinin, blood loss, and renal dysfunction in deep hypothermic circulatory arrest. Circulation 2001; 104(Suppl I):276–81.Google Scholar
  33. 33.
    Nuttall GA, Oliver WC, Ereth MH, Santrach PJ. Coagulation tests predict bleeding after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1997; 7:815–23.CrossRefGoogle Scholar
  34. 34.
    Anonymous. Practice guidelines for blood component therapy. A report by the American Societyof Anesthesiologists Task Force on Blood Component Therapy. Anesthesiology 1996; 84:732–47.CrossRefGoogle Scholar
  35. 35.
    Merritt JC, Bhatt DL. The efficacy and safety of perioperative antiplatelet therapy. J Thromb Thrombolysis 2004; 17:21–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Bick RL. Disseminated intravascular coagulation. Current concepts of etiology, pathophysiology, diagnosis, and treatment. Hematol Oncol Clin N Am 2003; 17:149–76.CrossRefGoogle Scholar
  37. 37.
    Barron ME, Wilkes MM, Navickis RJ. A systematic review of the comparative safety of colloids. Arch Surg 2004; 139:552–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Cammerer U, Dietrich W, Rampf T, Braun SL, Richter JA. The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery. Anesth Analg 2003; 96:51–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Welsby IJ, Podgoreanu MV, Phillips-Bute B, et al.;Perioperative Genetics and Safety Outcomes Study (PEGASUS) Investigative Team. Genetic factors contribute to bleeding after cardiac surgery. J Thromb Haemost 2005; 3:1206–12.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2006

Authors and Affiliations

  • Keyvan Karkouti
    • 1
    • 2
  • Rachel O’Farrell
    • 1
    • 4
  • Terrence M. Yau
    • 3
  • W. Scott Beattie
    • 1
  • Reducing Bleeding in Cardiac Surgery (RBC) Research Group
  1. 1.Department of AnesthesiaUniversity Health Network, Toronto General HospitalTorontoCanada
  2. 2.Department of Health Policy, Management, and EvaluationUniversity of TorontoTorontoCanada
  3. 3.Department of Cardiac SurgeryUniversity of TorontoTorontoCanada
  4. 4.Department of HematologyUniversity Health NetworkCanada

Personalised recommendations