Canadian Journal of Anesthesia

, Volume 54, Issue 5, pp 366–374

Propofol attenuates intestinal mucosa injury induced by intestinal ischemia-reperfusion in the rat

Reports of Original Investigations

Abstract

Purpose

We investigated whether propofol at a sedative dose can prevent intestinal mucosa ischemia/reperfusion (I/R) injury, and if propofol can attenuate oxidative stress and increases in nitric oxide (NO) and endothelin-1 (ET-1) release that may occur during intestinal I/R injury.

Methods

Rats were randomly allocated into one of five groups (n=10 each): (i) sham control; (ii) injury (one hour superior mesenteric artery occlusion followed by three hours reperfusion); (iii) propofol pre-treatment, with propofol given 30 min before inducing intestinal ischemia; (iv) simultaneous propofol treatment, with propofol given 30 min before intestinal reperfusion was started; (v) propofol post-treatment, with propofol given 30 min after intestinal reperfusion was initiated. In the treatment groups, propofol 50 mg·kg−1 was administrated intraperitoneally. Animals in the control and untreated injury groups received equal volumes of intralipid (the vehicle solution of propofol) intraperitoneally. Intestinal mucosa histology was analyzed by Chiu’s scoring assessment. Levels of lactic acid (LD), NO, ET-1, lipid peroxidation product malondialdehyde (MDA) and superoxide dismutase (SOD) activity in intestinal mucosa were determined.

Results

Histological results showed severe damage in the intestinal mucosa of the injury group accompanied by increases in MDA, NO and ET-1 and a decrease in SOD activity. Propofol treatments, especially pre-treatment, significantly reduced Chiu’s scores and levels of MDA, NO, ET-1 and LD, while restoring SOD activity.

Conclusion

These findings indicate that propofol attenuates intestinal I/R-induced mucosal injury in an animal model. The response may be attributable to propofol’s antioxidant properties, and the effects of inhibiting over-production of NO and in decreasing ET-1 levels.

Le propofol atténue les lésions de la muqueuse intestinale provoquées par l’ischémie-reperfusion intestinale chez le rat

Résumé

Objectif

Nous avons cherché à savoir si le propofol, en dose sédative, pouvait empêcher les lésions d’ischémie/reperfusion (I/R) de la muqueuse intestinale, et s’il pouvait atténuer le stress oxydatifet les augmentations dans la libération d’oxyde nitrique (NO) et d’endothéline-1 (ET-1) pouvant survenir lors de lésions I/R intestinales.

Méthode

Des rats ont été randomisés en cinq groupes (n = 10 chacun) : (i) faux témoin (sham control) ; (ii) lésion (occlusion de l’artère mésentérique supérieure d’une heure suivie par reperfusion de trois heures) ; (iii) prétraitement au propofol, avec administration de propofol 30 min avant de provoquer l’ischémie intestinale ; (iv) traitement simultané au propofol, avec administration de propofol 30 min avant le début de la reperfusion intestinale ; (v) traitement ultérieur au propofol, avec administration de propofol 30 min après le début de la reperfusion intestinale. Dans les groupes de traitement, du propofol a été administré en dose intrapéritonéale de 50 mg·kg−1. Les animaux des groupes témoin et lésions nontraitées ont reçu des volumes équivalents d’Intralipid (la solution véhicule du propofol) en dose intrapéritonéale. L’histologie de la muqueuse intestinale a été analysée par l’évaluation des points de Chiu (Chiu’s scoring assessment). Les niveaux d’acide lactique (LD), NO, ET-1, l’activité de produits de péroxydation lipidique de malondialdéhyde (MDA) et de superoxyde dismutase (SOD) dans la muqueuse intestinale ont été déterminés.

Résultats

Les résultats histologiques ont montré des lésions graves de la muqueuse intestinale dans le groupe lésions, accompagnées d’une augmentation de MDA, NO et ET-1 et une diminution de l’activité SOD. Les traitements au propofol, particulièrement le prétraitement, ont réduit de façon significative les résultats et niveaux de MDA, NO, ET-1 et LD sur l’échelle de Chiu, tout en restaurant l’activité SOD.

Conclusion

Ces résultats indiquent que le propofol atténue les lésions de la muqueuse intestinale provoquée par I/R chez le modèle animal. La réaction peut être attribuée aux propriétés anti-oxydantes du propofol, ainsi qu’aux effets d’inhibition de la surproduction de NO et de la diminution des niveaux de ET-1.

References

  1. 1.
    Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 2004; 49: 1359–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Farhadi A, Banan A, Fields J, Keshavarzian A. Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 2003; 18: 479–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Mollhoff T, Loick HM, Van Aken H, et al. Milrinone modulates endotoxemia, systemic inflammation, and subsequent acute phase response after cardiopulmonary bypass (CPB). Anesthesiology 1999; 90: 72–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Riddington DW, Venkatesh B, Boivin CM, et al. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 1996; 275: 1007–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Riaz AA, Wan MX, Schafer T, et al. Allopurinol and superoxide dismutase protect against leucocyte-endo-thelium interactions in a novel model of colonic isch-aemia-reperfusion. Br J Surg 2002; 89: 1572–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Xia ZY, Liu XY, Zhan LY, He YH, Luo T, Xia Z. Ginsenosides compound (shen-fu) attenuates gastrointestinal injury and inhibits inflammatory response after cardiopulmonary bypass in patients with congenital heart disease. J Thorac Cardiovasc Surg 2005; 130: 258–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy PG, Myers DS, Davies MJ, Webster NR, Jones JG. The antioxidant potential of propofol (2,6-diiso-propylphenol). Br J Anaesth 1992; 68: 613–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Mathy-Hartert M, Mouithys-Mickalad A, Kohnen S, Deby-Dupont G, Lamy M, Hans P. Effects of propofol on endothelial cells subjected to a peroxynitrite donor (SIN-1). Anaesthesia 2000; 55: 1066–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Xia Z, Huang Z, Ansley DM. Large-dose propofol during cardiopulmonary bypass decreases biochemical markers of myocardial injury in coronary surgery patients: a comparison with isoflurane. Anesth Analg 2006; 103: 527–32.PubMedCrossRefGoogle Scholar
  10. 10.
    De Hert SG, Cromheecke S, ten Broecke PW, et al. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 2003; 99: 314–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Bovill JG. Intravenous anesthesia for the patient with left ventricular dysfunction. Semin Cardiothorac Vasc Anesth 2006; 10: 43–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Runzer TD, Ansley DM, Godin DV, Chambers GK. Tissue antioxidant capacity during anesthesia: propofol enhances in vivo red cell and tissue antioxidant capacity in a rat model. Anesth Analg 2002; 94: 89–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng YJ, Wang YP, Chien CT, Chen CF. Small-dose propofol sedation attenuates the formation of reactive oxygen species in tourniquet-induced ischemia-reperfu-sion injury under spinal anesthesia. Anesth Analg 2002; 94: 1617–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Naito Y, Takagi T, Ichikawa H, et al. A novel potent inhibitor of inducible nitric oxide inhibitor, ONO- 1714, reduces intestinal ischemia-reperfusion injury in rats. Nitric Oxide 2004; 10: 170–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Cuzzocrea S, Chatterjee PK, Mazzon E, et al. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock 2002; 18: 169–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Massberg S, Boros M, Leiderer R, Baranyi L, Okada H, Messmer K. Endothelin (ET)-1 induced mucosal damage in the rat small intestine: role of ET(A) receptors. Shock 1998; 9: 177–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Oktar BK, Gulpinar MA, Bozkurt A, et al. Endothelin receptor blockers reduce I/R-induced intestinal mucosal injury: role of blood flow. Am J Physiol Gastrointest Liver Physiol 2002; 282: G647–55.PubMedGoogle Scholar
  18. 18.
    Mitsuoka H, Unno N, Sakurai T, et al. Pathophysiological role of endothelins in pulmonary microcirculatory disorders due to intestinal ischemia and reperfusion. J Surg Res 1999; 87: 143–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Inagawa G, Sato K, Kikuchi T, et al. Chronic ethanol consumption does not affect action of propofol on rat hippocampal acetylcholine release in vivo. Br J Anaesth 2004; 93: 737–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Brasil LJ, San-Miguel B, Kretzmann NA, et al. Halothane induces oxidative stress and NF-kappaB activation in rat liver: protective effect of propofol. Toxicology 2006; 227: 53–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 1970; 101: 478–83.PubMedGoogle Scholar
  22. 22.
    Luo T, Xia Z. A small dose of hydrogen peroxide enhances tumor necrosis factor-alpha toxicity in inducing human vascular endothelial cell apoptosis: reversal with propofol. Anesth Analg 2006; 103: 110–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Xia Z, Gum J, Ansley DM, Xia F, Yu J. Antioxidant therapy with Salvia miltiorrhiza decreases plasma endothelin-1 and thromboxane B2 after cardiopulmonary bypass in patients with congenital heart disease. J Thorac Cardiovasc Surg 2003; 126: 1404–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001; 5: 62–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Chang L, Du JB, Gao LR, Pang YZ, Tang CS. Effect of ghrelin on septic shock in rats. Acta Pharmacol Sin 2003; 24: 45–9.PubMedGoogle Scholar
  26. 26.
    Kruidenier L, van Meeteren ME, Kuiper I, et al. Attenuated mild colonic inflammation and improved survival from severe DSS-colitis of transgenic Cu/Zn- SOD mice. Free Radic Biol Med 2003; 34: 753–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Acquaviva R, Campisi A, Murabito P, et al. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: an alternative protective mechanism. Anesthesiology 2004; 101: 1363–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Acquaviva R, Campisi A, Raciti G, et al. Propofol inhibits caspase-3 in astroglial cells: role of heme oxygenase-1. Curr Neurovasc Res 2005; 2: 141–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Ferencz A, Szanto Z, Borsiczky B, et al. The effects of preconditioning on the oxidative stress in small-bowel autotransplantation. Surgery 2002; 132: 877–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Tamion F, Richard V, Lacoume Y, Thuillez C. Intestinal preconditioning prevents systemic inflammatory response in hemorrhagic shock. Role of HO-1. Am J Physiol Gastrointest Liver Physiol 2002; 283: G408–14.PubMedGoogle Scholar
  31. 31.
    Stefanutti G, Pierro A, Vinardi S, Spitz L, Eaton S. Moderate hypothermia protects against systemic oxidative stress in a rat model of intestinal ischemia and reperfusion injury. Shock 2005; 24: 159–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Yagmurdur H, Aksoy M, Arslan M, Baltaci B. The effects of propofol and ketamine on gut mucosal epithelial apoptosis in rats after burn injury. Eur J Anaesthesiol 2007; 24: 46–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med 2000; 109: 150–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen RM, Wu GJ, Tai YT, et al. Propofol reduces nitric oxide biosynthesis in lipopolysaccharide-activated macrophages by downregulating the expression of inducible nitric oxide synthase. Arch Toxicol 2003; 77: 418–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Yu HP, Lui PW, Hwang TL, Yen CH, Lau YT. Propofol improves endothelial dysfunction and attenuates vascular superoxide production in septic rats. Crit Care Med 2006; 34: 453–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Nankervis CA, Schauer GM, Miller CE. Endothelinmediated vasoconstriction in postischemic newborn intestine. Am J Physiol Gastrointest Liver Physiol 2000; 279: G683–91.PubMedGoogle Scholar
  37. 37.
    Yasuda M, Kohno M, Tahara A, et al. Circulating immunoreactive endothelin in ischemic heart disease. Am Heart J 1990; 119: 801–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Mangi AA, Christison-Lagay ER, Torchiana DF, Warshaw AL, Berger DL. Gastrointestinal complications in patients undergoing heart operation: an analysis of 8709 consecutive cardiac surgical patients. Ann Surg 2005; 241: 895–901; discussion 901-4.PubMedCrossRefGoogle Scholar
  39. 39.
    Omland T, Lie RT, Aakvaag A, Aarsland T, Dickstein K. Plasma endothelin determination as a prognostic indicator of 1-year mortality after acute myocardial infarction. Circulation 1994; 89: 1573–9.PubMedGoogle Scholar
  40. 40.
    Pollock DM, Pollock JS. Endothelin and oxidative stress in the vascular system. Curr Vasc Pharmacol 2005; 3: 365–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Xia Z, Luo T. Sevoflurane or desflurane anesthesia plus postoperative propofol sedation attenuates myocardial injury after coronary surgery in elderly high-risk patients. Anesthesiology 2004; 100: 1038–9.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2007

Authors and Affiliations

  1. 1.Department of AnesthesiologyThe First Affiliated Hospital, Sun Yat-sen UniversityGuangzhouChina
  2. 2.Anesthesiology Research Laboratory, Department of AnesthesiologyRenmin Hospital, Wuhan UniversityWuhanChina
  3. 3.Division of Cardiac Anesthesia and Intensive CareHeart Center, Tampere University HospitalTampereFinland
  4. 4.Department of AnesthesiologyGuangdong Provincial People’s HospitalGuangzhouChina
  5. 5.Dept of Pharmacology & TherapeuticsUniversity of CalgaryCalgaryCanada

Personalised recommendations