Canadian Journal of Anesthesia

, Volume 53, Supplement 2, pp S89–S102 | Cite as

Traitement antithrombotique en chirurgie cardiaque

  • André Vincentelli
  • Brigitte Jude
  • Sylvain Bélisle
III-Managing the risk of thrombosis

Antithrombotic therapy in cardiac surgery

Abstract

Purpose

To review the perioperative management of anti-thrombotic therapy in cardiac surgery, including the management of cardiopulmonary bypass (CPB) and off-pump surgery.

Methods

A review of the relevant English literature over the period 1975–2005 was undertaken, in addition to a review of international practices in antithrombotic therapy in cardiac surgery.

Principal findings

Cardiopulmonary bypass is required in most procedures and makes anticoagulation mandatory. Anticoagulation is, usually, achieved with unfractionnated heparin (UFH). Unfractionated heparin is monitored by point-of-care (POC) testing, such as the activated clotting time or the determination of heparin concentration. The target values of both tests remain empirical, with no clearly validated thresholds. The target value needs to be adjusted according to the POC test, given significant variations between devices and activators. After CABG, the need for antiplatelet therapy is well demonstrated, in order to limit the risk of postoperative death or ischemic events, and improve venous graft patency. Immediately after valvular surgery, antithrombotic therapy should take into account the specific risk carried by each patient and by each prosthetic device. The risk of venous thromboembolism, though poorly defined, is also present in the postoperative period and may require additional attention. Given the frequent exposure to UFH, occurrence of heparin-induced thrombocytopenia is not infrequent in these patients and requires careful individual management.

Conclusions

Antithrombotic therapy is an essential component of cardiac surgery. Yet, with the exception of antiplatelet agents in CABG patients, antithrombotic therapy is often based on the clinical experience of medical teams more than on an evidence-based assessment of the literature.

Resume

Objectif

Revoir la gestion périopératoire du traitement anti-thrombotique en chirurgie cardiaque, incluant la circulation extracorporelle (CEC) et la chirurgie à cœur battant.

Méthode

Une revue des articles pertinents publiés en anglais de 1975 à 2005 a été entreprise en plus ďune revue des pratiques internationales de traitement antithrombotique en cardiochirurgie.

Constatations principales

La circulation extracorporelle est nécessaire pour la majorité des opérations et rend ľanticoagulation obligatoire. Ľanticoagulation est, habituellement, réalisée avec de ľhéparine non fractionnée (HNF). ĽHNF est contrôlée par des tests faits au chevet du malade comme le temps de coagulation activée ou la détermination de la concentration ďhéparine. Les valeurs cible des deux tests demeurent empiriques, sans valeurs seuil clairement validées. La valeur cible doit être ajustée en fonction de chaque test de chevet à cause des variations significatives entre les instruments et les activateurs. Après le pontage aortocoronarien (PAC), la nécessité ďun traitement antiplaquettaire a été bien démontrée, qui vise à limiter les décès postopératoires ou les incidents ischémiques et à améliorer la perméabilité du greffon veineux. Immédiatement après la chirurgie valvulaire, le traitement antithrombotique doit tenir compte du risque spécifique à chaque patient et à chaque prothèse. Le risque de thromboembolie veineuse, bien que peu défini, est aussi présent en période postopératoire et peut nécessiter une attention supplémentaire. Étant donné ľexposition fréquente à ľHNF, ľoccurrence de thrombopé-nie induite par ľhéparine n’est pas rare chez ces patients et exige une prise en charge individuelle particulière.

Conclusion

Le traitement antithrombotique est une composante essentielle de la chirurgie cardiaque. Néanmoins, à ľexception des antiplaquettaires chez les patients qui ont subi un PAC, le traitement antithrombotique repose souvent sur ľexpérience clinique des équipes médicales plus que sur ľévaluation fondée sur les données de la recherche.

References

  1. 1.
    Beijering RJ, Ten Cate H, Nurmohamed MT, Ten Cate JW. Anticoagulants and extracorporeal circuits. Semin Thromb Hemost 1997; 23: 225–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Beguin S, Welzel D, Al Dieri R, Hemker HC. Conjectures and refutations on the mode of action of heparins. The limited importance of anti-factor xa activity as a pharmaceutical mechanism and a yardstick for therapy. Haemostasis 1999; 29:170–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Despotis GJ, Gravlee G, Filos K, Levy J. Anticoagulation monitoring during cardiac surgery: a review of current and emerging techniques. Anesthesiology 1999; 91: 1122–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Despotis GJ, Levine V, Joiner-Maier D, Joist JH. A comparison between continuous infusion versus standard bolus administration of heparin based on monitoring in cardiac surgery. Blood Coagul Fibrinolysis 1997; 8: 419–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Esposito RA, Culliford AT, Colvin SB, Thomas SJ, Lackner H, Spencer FC. Heparin resistance during cardiopulmonary bypass. The role of heparin pretreatment. J Thorac Cardiovasc Surg 1983; 85: 346–53.PubMedGoogle Scholar
  6. 6.
    Bull BS, Korpman RA, Huse WM, Briggs BD. Heparin therapy during extracorporeal circulation. I. Problems inherent in existing heparin protocols. J Thorac Cardiovasc Surg 1975; 69: 674–84.PubMedGoogle Scholar
  7. 7.
    Cohen M. Monitoring anticoagulation during percutaneous coronary interventions. J Thromb Thrombolysis 1995; 1: 285–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Despotis GJ, Summerfield AL, Joist JH, et al. Comparison of activated coagulation time and whole blood heparin measurements with laboratory plasma anti-Xa heparin concentration in patients having cardiac operations. J Thorac Cardiovasc Surg 1994; 108: 1076–82.PubMedGoogle Scholar
  9. 9.
    Murray DJ, Brosnahan WJ, Pennell B, Kapalanski D, Weiler JM, Olson J. Heparin detection by the activated coagulation time: a comparison of the sensitivity of coagulation tests and heparin assays. J Cardiothorac Vasc Anesth 1997; 11: 24–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Culliford AT, Gitel SN, Starr N, et al. Lack of correlation between activated clotting time and plasma heparin during cardiopulmonary bypass. Ann Surg 1981; 193: 105–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Hirsh J, Warkentin TE, Shaughnessy SG, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 2001; 119: 64S-94S.PubMedCrossRefGoogle Scholar
  12. 12.
    Malviya S. Monitoring and management of anticoagulation in children requiring extracorporeal circulation. Semin Thromb Hemost 1997; 23: 563–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Despotis GJ, Joist JH. Anticoagulation and anticoagulation reversal with cardiac surgery involving cardio-pulmonary bypass: an update. J Cardiothorac Vasc Anesth 1999; 13(4 Suppl 1): 18–29; discussion 36-7.PubMedGoogle Scholar
  14. 14.
    Prisco D, Paniccia R. Point-of-care testing of hemostasis in cardiac surgery. Thromb J 2003; 1: 1.PubMedCrossRefGoogle Scholar
  15. 15.
    Young JA, Kisker CT, Doty DB. Adequate anticoagulation during cardiopulmonary bypass determined by activated clotting time and the appearance of fibrin monomer. Ann Thorac Surg 1978; 26: 231–40.PubMedGoogle Scholar
  16. 16.
    Gravlee GP, Case LD, Angert KC, Rogers AT, Miller GS. Variability of the activated coagulation time. Anesth Analg 1988; 67: 469–72.PubMedGoogle Scholar
  17. 17.
    Jewell AE, Akowuah EF, Suvarna SK, Braidley P, Hopkinson D, Cooper G. A prospective randomised comparison of cardiotomy suction and cell saver for recycling shed blood during cardiac surgery. Eur J Cardiothorac Surg 2003; 23: 633–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Ranucci M, Cazzaniga A, Soro G, Isgro G, Frigiola A, Menicanti L. The antithrombin III-saving effect of reduced systemic heparinization and heparin-coated circuits. J Cardiothorac Vasc Anesth 2002; 16: 316–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnell M, Elgue G, Larsson R, Larsson A, Thelin S, Siegbahn A. Coagulation, fibrinolysis, and cell activation in patients and shed mediastinal blood during coronary artery bypass grafting with a new heparincoated surface. J Thorac Cardiovasc Surg 2002; 124: 321–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Baufreton C, de Brux JL, Binuani P, et al. A combined approach for improving cardiopulmonary bypass in coronary artery surgery: a pilot study. Perfusion 2002; 17: 407–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Baufreton C, de Brux JL. Coagulation, fibrinolysis, and cell activation in patients and in shed mediastinal blood during coronary artery bypass grafting with a new heparin-coated surface. J Thorac Cardiovasc Surg 2003; 126: 2116.PubMedCrossRefGoogle Scholar
  22. 22.
    Forestier F, Belisle S, Contant C, Harel F, Janvier G, Hardy JF. Reproducibility and interchangeability of the Thromboelastograph, Sonoclot and Hemochron activated coagulation time in cardiac surgery. Can J Anesth 2001; 48: 902–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Hezard N,Metz D,Potron G,et al. Monitoring the effect of heparin bolus during percutaneous coronary angioplasty (PTCA): assessment of three bedside coagulation monitors. Thromb Haemost 1998; 80: 865–6.Google Scholar
  24. 24.
    Welsby IJ, McDonnell E, El-Moalem H, Stafford-Smith M, Toffaletti JG. Activated clotting time systems vary in precision and bias and are not interchangeable when following heparin management protocols during cardiopulmonary bypass. J Clin Monit Comput 2002; 17: 287–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Wendel HP, Heller W, Gallimore MJ, Bantel H, Muller-Beissenhirtz H, Hoffmeister HE. The prolonged activated clotting time (ACT) with aprotinin depends on the type of activator used for measurement. Blood Coagul Fibrinolysis 1993; 4: 41–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang JS, Lin CY, Hung WT, Thisted RA, Karp RB. In vitro effects of aprotinin on activated clotting time measured with different activators. J Thorac Cardiovasc Surg 1992; 104: 1135–40.PubMedGoogle Scholar
  27. 27.
    Najman DM, Walenga JM, Fareed J, Pifarre R. Effects of aprotinin on anticoagulant monitoring: implications in cardiovascular surgery. Ann Thorac Surg 1993; 55: 662–6.PubMedGoogle Scholar
  28. 28.
    Dietrich W, Dilthey G, Spannagl M, Jochum M, Braun SL, Richter JA. Influence of high-dose aprotinin on anticoagulation, heparin requirement, and celite- and kaolin-activated clotting time in heparin-pretreated patients undergoing open-heart surgery. A double- blind, placebo-controlled study. Anesthesiology 1995; 83: 679–89; discussion 29A-30A.PubMedCrossRefGoogle Scholar
  29. 29.
    Hunt BJ, Segal H, Yacoub M. Aprotinin and heparin monitoring during cardiopulmonary bypass. Circulation 1992; 86(5 Suppl): II410–2.PubMedGoogle Scholar
  30. 30.
    Bechtel JF, Prosch J, Sievers HH, Bartels C. Is the kaolin or celite activated clotting time affected by tranexamic acid? Ann Thorac Surg 2002; 74: 390–3; discussion 393.PubMedCrossRefGoogle Scholar
  31. 31.
    Gravlee GP, Whitaker CL, Mark LJ, Rogers AT, Royster RL, Harrison GA. Baseline activated coagulation time should be measured after surgical incision. Anesth Analg 1990; 71: 549–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Horkay F, Martin P, Rajah SM, Walker DR. Response to heparinization in adults and children undergoing cardiac operations. Ann Thorac Surg 1992; 53: 822–6.PubMedGoogle Scholar
  33. 33.
    Yun JH, Lee LM, Wahr JA, Fu B, Meyerhoff ME, Yang VC. Clinical application of disposable heparin sensors. Blood heparin measurements during open heart surgery. ASAIO J 1995; 41: M661–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Harloff M, Taraskiewicz J, Fotouhi C. Comparison study of the Hepcon System Four and the Hemostasis Management System. Perfusion 1991; 6: 297–301.PubMedCrossRefGoogle Scholar
  35. 35.
    Hardy JF, Belisle S, Robitaille D, Perrault J, Roy M, Gagnon L. Measurement of heparin concentration in whole blood with the Hepcon/HMS device does not agree with laboratory determination of plasma hepa- rin concentration using a chromogenic substrate for activated factor X. J Thorac Cardiovasc Surg 1996; 112: 154–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Despotis GJ, Joist JH, Goodnough LT, Santoro SA, Spitznagel E. Whole blood heparin concentration measurements by automated protamine titration agree with plasma anti-Xa measurements. J Thorac Cardiovasc Surg 1997; 113: 611–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Koster A, Fischer T, Praus M, et al. Hemostatic activation and inflammatory response during cardiopulmonary bypass: impact of heparin management. Anesthesiology 2002; 97: 837–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Gravlee GP, Rogers AT, Dudas LM, et al. Heparin management protocol for cardiopulmonary bypass influences postoperative heparin rebound but not bleeding. Anesthesiology 1992; 76: 393–401.PubMedCrossRefGoogle Scholar
  39. 39.
    Despotis GJ, Joist JH, Hogue CW, et al. The impact of heparin concentration and activated clotting time monitoring on blood conservation. A prospective, randomized evaluation in patients undergoing cardiac operation. J Thorac Cardiovasc Surg 1995; 110: 46–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Koster A, Fischer T, Gruendel M, et al. Management of heparin resistance during cardiopulmonary bypass: the effect of five different anticoagulation strategies on hemostatic activation. J Cardiothorac Vasc Anesth 2003; 17: 171–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Levy JH, Despotis GJ, Szlam F, Olson P, Meeker D, Weisinger A. Recombinant human transgenic anti- thrombin in cardiac surgery: a dose-finding study. Anesthesiology 2002; 96: 1095–102.PubMedCrossRefGoogle Scholar
  42. 42.
    Lemmer JH, Despotis GJ. Antithrombin III concentrate to treat heparin resistance in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 2002; 123: 213–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Slaughter TF, Mark JB, El-Moalem H, et al. Hemostatic effects of antithrombin III supplementation during cardiac surgery: results of a prospective randomized investigation. Blood Coagul Fibrinolysis 2001; 12: 25–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Nicholson SC, Keeling DM, Sinclair ME, Evans RD. Heparin pretreatment does not alter heparin requirements during cardiopulmonary bypass. Br J Anaesth 2001; 87: 844–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Williams MR, D’Ambra AB, Beck JR, et al. A randomized trial of antithrombin concentrate for treatment of heparin resistance. Ann Thorac Surg 2000; 70: 873–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Despotis GJ, Levine V, Joist JH, Joiner-Maier D, Spitznagel E. Antithrombin III during cardiac surgery: effect on response of activated clotting time to heparin and relationship to markers of hemostatic activation. Anesth Analg 1997; 85: 498–506.PubMedCrossRefGoogle Scholar
  47. 47.
    Hashimoto K, Yamagishi M, Sasaki T, Nakano M, Kurosawa H. Heparin and antithrombin III levels during cardiopulmonary bypass: correlation with sub- clinical plasma coagulation. Ann Thorac Surg 1994; 58: 799–804; discussion 804-5.PubMedGoogle Scholar
  48. 48.
    Donias HW, D’Ancona G, Pande RU, Schimpf D, Kawaguchi AT, Karamanoukian HL. Heparin dose, transfusion rates, and intraoperative graft patency in minimally invasive direct coronary artery bypass. Heart Surg Forum 2003; 6: 176–80.PubMedGoogle Scholar
  49. 49.
    Stein PD, Dalen JE, Goldman S, Theroux P. Antithrombotic therapy in patients with saphenous vein and internal mammary artery bypass grafts. Chest 2001; 119(1 Suppl): 278S-82S.PubMedCrossRefGoogle Scholar
  50. 50.
    Mayer JE, Lindsay WG, Castaneda W, Nicoloff DM. Influence of aspirin and dipyridamole on patency of coronary artery bypass grafts. Ann Thorac Surg 1981; 31: 204–10.PubMedGoogle Scholar
  51. 51.
    Goldman S, Copeland J, Moritz T, et al. Long-term graft patency (3 years) after coronary artery surgery. Effects of aspirin: results of a VA Cooperative study. Circulation 1994; 89: 1138–43.PubMedGoogle Scholar
  52. 52.
    Stein PD, Schunemann HJ, Dalen JE, Gutterman D. Antithrombotic therapy in patients with saphenous vein and internal mammary artery bypass grafts: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126(3 Suppl): 600S-8S.PubMedCrossRefGoogle Scholar
  53. 53.
    Goldman S, Copeland J, Moritz T, et al. Improvement in early saphenous vein graft patency after coronary artery bypass surgery with antiplatelet therapy: results of a Veterans Administration Cooperative Study. Circulation 1988; 77: 1324–32.PubMedGoogle Scholar
  54. 54.
    Goldman S, Copeland J, Moritz T, et al. Saphenous vein graft patency 1 year after coronary artery bypass surgery and effects of antiplatelet therapy. Results of a Veterans Administration Cooperative Study. Circulation 1989; 80: 1190–7.PubMedGoogle Scholar
  55. 55.
    Gavaghan TP, Gebski V, Baron DW. Immediate postoperative aspirin improves vein graft patency early and late after coronary artery bypass graft surgery. A placebo-controlled, randomized study. Circulation 1991; 83: 1526–33.PubMedGoogle Scholar
  56. 56.
    McEnany MT, Salzman EW, Mundth ED, et al. The effect of antithrombotic therapy on patency rates of saphenous vein coronary artery bypass grafts. J Thorac Cardiovasc Surg 1982; 83: 81–9.PubMedGoogle Scholar
  57. 57.
    Brown BG, Cukingnan RA, DeRouen T, et al. Improved graft patency in patients treated with platelet-inhibiting therapy after coronary bypass surgery. Circulation 1985; 72: 138–46.PubMedGoogle Scholar
  58. 58.
    Sharma GV, Khuri SF, Josa M, Folland ED, Parisi AF. The effect of antiplatelet therapy on saphenous vein coronary artery bypass graft patency. Circulation 1983; 68(3 Pt 2): II218–21.PubMedGoogle Scholar
  59. 59.
    Chesebro JH, Clements IP, Fuster V, et al. A platelet-inhibitor-drug trial in coronary-artery bypass operations: benefit of perioperative dipyridamole and aspirin therapy on early postoperative vein-graft patency. N Engl J Med 1982; 307: 73–8.PubMedGoogle Scholar
  60. 60.
    Eagle KA, Guyton RA, Davidoff R, et al. ACC/ AHA 2004 guideline update for coronary artery bypass graft surgery: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). Circulation 2004; 110: 1168–76.PubMedCrossRefGoogle Scholar
  61. 61.
    Kallis P, Tooze JA, Talbot S, Cowans D, Bevan DH, Treasure T. Pre-operative aspirin decreases platelet aggregation and increases post-operative blood loss--a prospective, randomised, placebo controlled, double- blind clinical trial in 100 patients with chronic stable angina. Eur J Cardiothorac Surg 1994; 8: 404–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Sethi GK, Copeland JG, Goldman S, Moritz T, Zadina K, Henderson WG. Implications of preoperative administration of aspirin in patients undergoing coronary artery bypass grafting. Department of Veterans Affairs Cooperative Study on Antiplatelet Therapy. J Am Coll Cardiol 1990; 15: 15–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Taggart DP, Siddiqui A, Wheatley DJ. Low-dose preoperative aspirin therapy, postoperative blood loss, and transfusion requirements. Ann Thorac Surg 1990; 50: 424–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Belisle S, Hardy JF. Hemorrhage and the use of blood products after adult cardiac operations: myths and realities. Ann Thorac Surg 1996; 62: 1908–17.PubMedCrossRefGoogle Scholar
  65. 65.
    Dacey LJ, Munoz JJ, Johnson ER, et al. Effect of preoperative aspirin use on mortality in coronary artery bypass grafting patients. Ann Thorac Surg 2000; 70: 1986–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Mangano DT;Multicenter Study of Perioperative Ischemia Research Group. Aspirin and mortality from coronary bypass surgery. N Engl J Med 2002; 347: 1309–17.PubMedCrossRefGoogle Scholar
  67. 67.
    Fox KA, Mehta SR, Peters R, et al. Benefits and risks of the combination of clopidogrel and aspirin in patients undergoing surgical revascularization for non-ST-elevation acute coronary syndrome: the Clopidogrel in Unstable angina to prevent Recurrent ischemic Events (CURE) Trial. Circulation 2004; 110: 1202–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Englberger L, Faeh B, Berdat PA, Eberli F, Meier B, Carrel T. Impact of clopidogrel in coronary artery bypass grafting. Eur J Cardiothorac Surg 2004; 26: 96–101.PubMedCrossRefGoogle Scholar
  69. 69.
    Cosgrove DM 3rd, Heric B, Lytle BW, et al. Aprotinin therapy for reoperative myocardial revascularization: a placebo-controlled study. Ann Thorac Surg 1992; 54: 1031–6; discussion 1036–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Havel M, Grabenwoger F, Schneider J, et al. Aprotinin does not decrease early graft patency after coronary artery bypass grafting despite reducing postoperative bleeding and use of donated blood. J Thorac Cardiovasc Surg 1994; 107: 807–10.PubMedGoogle Scholar
  71. 71.
    Levy JH, Pifarre R, Schaff HV, et al. A multicenter, double-blind, placebo-controlled trial of aprotinin for reducing blood loss and the requirement for donor- blood transfusion in patients undergoing repeat coronary artery bypass grafting. Circulation 1995; 92: 2236–44.PubMedGoogle Scholar
  72. 72.
    Vander Salm TJ, Kaur S, Lancey RA.et al. Reduction of bleeding after heart operations through the prophylactic use of epsilon-aminocaproic acid (French). J Thorac Cardiovasc Surg 1996; 112: 1098–107.CrossRefGoogle Scholar
  73. 73.
    Horrow JC, Van Riper DF, Strong MD, Brodsky I, Parmet JL. Hemostatic effects of tranexamic acid and desmopressin during cardiac surgery. Circulation 1991; 84: 2063–70.PubMedGoogle Scholar
  74. 74.
    Horrow JC, Hlavacek J, Strong MD, et al. Prophylactic tranexamic acid decreases bleeding after cardiac operations. J Thorac Cardiovasc Surg 1990; 99: 70–4.PubMedGoogle Scholar
  75. 75.
    Jares M, Vanek T, Straka Z, Brucek P. Tranexamic acid reduces bleeding after off-pump coronary artery bypass grafting. J Cardiovasc Surg (Torino) 2003; 44: 205–8.Google Scholar
  76. 76.
    Pleym H, Stenseth R, Wahba A, Bjella L, Karevold A, Dale O. Single-dose tranexamic acid reduces postoperative bleeding after coronary surgery in patients treated with aspirin until surgery. Anesth Analg 2003; 96: 923–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Hekmat K, Zimmermann T, Kampe S, et al. Impact of tranexamic acid vs. aprotinin on blood loss and transfusion requirements after cardiopulmonary bypass: a prospective, randomised, double-blind trial. Curr Med Res Opin 2004; 20: 121–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Zimmermann N, Kienzle P, Weber AA, et al. Aspirin resistance after coronary artery bypass grafting. J Thorac Cardiovasc Surg 2001; 121: 982–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Zimmermann N, Wenk A, Kim U, et al. Functional and biochemical evaluation of platelet aspirin resistance after coronary artery bypass surgery. Circulation 2003; 108: 542–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Lim E, Cornelissen J, Routledge T, et al. Clopidogrel did not inhibit platelet function early after coronary bypass surgery: a prospective randomized trial. J Thorac Cardiovasc Surg 2004; 128: 432–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Gohlke-Barwolf C, Acar J, Oakley C, et al. Guidelines for prevention of thromboembolic events in valvular heart disease. Study Group of the Working Group on Valvular Heart Disease of the European Society of Cardiology. Eur Heart J 1995; 16: 1320–30.PubMedGoogle Scholar
  82. 82.
    Bonow RO, Carabello B, de Leon AC, et al. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation 1998; 98: 1949–84.PubMedGoogle Scholar
  83. 83.
    Salem DN, Stein PD, Al-Ahmad A, et al. Antithrombotic therapy in valvular heart disease-- native and prosthetic: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126: 457S-82S.PubMedCrossRefGoogle Scholar
  84. 84.
    Gherli T, Colli A, Fragnito C, et al. Comparing warfarin with aspirin after biological aortic valve replacement: a prospective study. Circulation 2004; 110: 496–500.PubMedCrossRefGoogle Scholar
  85. 85.
    Montalescot G, Polle V, Collet JP, et al. Low molecular weight heparin after mechanical heart valve replacement. Circulation 2000; 101: 1083–6.PubMedGoogle Scholar
  86. 86.
    Fanikos J, Tsilimingras K, Kucher N, Rosen AB, Hieblinger MD, Goldhaber SZ. Comparison of efficacy, safety, and cost of low-molecular-weight heparin with continuous-infusion unfractionated heparin for initiation of anticoagulation after mechanical prosthetic valve implantation. Am J Cardiol 2004; 93: 247–50.PubMedCrossRefGoogle Scholar
  87. 87.
    Tinmouth AH, Morrow BH, Cruickshank MK, Moore PM, Kovacs MJ. Dalteparin as periprocedure anticoagulation for patients on warfarin and at high risk of thrombosis. Ann Pharmacother 2001; 35: 669–74.PubMedCrossRefGoogle Scholar
  88. 88.
    Singer DE, Albers GW, Dalen JE, Go AS, Halperin JL, Manning WJ. Antithrombotic therapy in atrial fibrillation: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126(3 Suppl): 429S-56S.PubMedCrossRefGoogle Scholar
  89. 89.
    Goldhaber SZ, Hirsch DR, MacDougall RC, Polak JF, Creager MA, Cohn LH. Prevention of venous thrombosis after coronary artery bypass surgery (a randomized trial comparing two mechanical prophylaxis strategies). Am J Cardiol 1995; 76: 993–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Rao G, Zikria EA, Miller WH, Samadani SR, Ford WB. Incidence and prevention of pulmonary embolism after coronary artery surgery. Vasc Surg 1975; 9: 37–45.PubMedGoogle Scholar
  91. 91.
    Josa M, Siouffi SY, Silverman AB, Barsamian EM, Khuri SF, Sharma GV. Pulmonary embolism after cardiac surgery. J Am Coll Cardiol 1993; 21: 990–6.PubMedGoogle Scholar
  92. 92.
    Parenti C. Pulmonary embolism after coronary artery bypass surgery. Crit Care Nurs Q 1994; 17: 48–50.PubMedGoogle Scholar
  93. 93.
    Ambrosetti M, Salerno M, Zambelli M, Mastropasqua F, Tramarin R, Pedretti RF. Deep vein thrombosis among patients entering cardiac rehabilitation after coronary artery bypass surgery. Chest 2004; 125: 191–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Warkentin TE, Chong BH, Greinacher A. Heparininduced thrombocytopenia: towards consensus. Thromb Haemost 1998; 79: 1–7.PubMedGoogle Scholar
  95. 95.
    Warkentin TE. Heparin-induced thrombocytopenia: pathogenesis and management. Br J Haematol 2003; 121: 535–55.PubMedCrossRefGoogle Scholar
  96. 96.
    Warkentin TE, Kelton JG. A 14-year study of heparin- induced thrombocytopenia. Am J Med 1996; 101: 502–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Warkentin TE, Kelton JG. Temporal aspects of heparin-induced thrombocytopenia. N Engl J Med 2001; 344: 1286–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Singer RL, Mannion JD, Bauer TL, Armenti FR, Edie RN. Complications from heparin-induced thrombocytopenia in patients undergoing cardiopulmonary bypass. Chest 1993; 104: 1436–40.PubMedCrossRefGoogle Scholar
  99. 99.
    Walls JT, Curtis JJ, Silver D, Boley TM, Schmaltz RA, Nawarawong W. Heparin-induced thrombocytopenia in open heart surgical patients: sequelae of late recognition. Ann Thorac Surg 1992; 53: 787–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Francis JL, Palmer GJ 3rd, Moroose R, Drexler A. Comparison of bovine and porcine heparin in heparin antibody formation after cardiac surgery. Ann Thorac Surg 2003; 75: 17–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Warkentin TE, Greinacher A. Heparin-induced thrombocytopenia: recognition, treatment, and prevention: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126(3 Suppl): 311S-37S.PubMedCrossRefGoogle Scholar
  102. 102.
    Pouplard C, May M, Regina S, Maakaroun A, Fusciardi J, Gruel Y. Changes in the platelet count after cardiopulmonary bypass can efficiently predict the development of pathogenic heparin-dependent antibodies. Blood 2002; 100: 16A-17A.Google Scholar
  103. 103.
    Warkentin TE, Roberts RS, Hirsh J, Kelton JG. An improved definition of immune heparin-induced thrombocytopenia in postoperative orthopedic patients. Arch Intern Med 2003; 163: 2518–24.PubMedCrossRefGoogle Scholar
  104. 104.
    Martin JF, Daniel TD, Trowbridge EA. Acute and chronic changes in platelet volume and count after cardiopulmonary bypass induced thrombocytopenia in man. Thromb Haemost 1987; 57: 55–8.PubMedGoogle Scholar
  105. 105.
    Liu JC, Lewis BE, Steen LH, et al. Patency of coronary artery bypass grafts in patients with heparin- induced thrombocytopenia. Am J Cardiol 2002; 89: 979–81.PubMedCrossRefGoogle Scholar
  106. 106.
    Hong AP, Cook DJ, Sigouin CS, Warkentin TE. Central venous catheters and upper-extremity deep-vein thrombosis complicating immune heparin-induced thrombocytopenia. Blood 2003; 101: 3049–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Warkentin TE. Platelet count monitoring and laboratory testing for heparin-induced thrombocytopenia. Arch Pathol Lab Med 2002; 126: 1415–23.PubMedGoogle Scholar
  108. 108.
    Warkentin TE, Heddle NM. Laboratory diagnosis of immune heparin-induced thrombocytopenia. Curr Hematol Rep 2003; 2: 148–57.PubMedGoogle Scholar
  109. 109.
    Koster A, Crystal GJ, Kuppe H, Mertzlufft F. Acute heparin-induced thrombocytopenia type II during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2000; 14: 300–3.PubMedCrossRefGoogle Scholar
  110. 110.
    Koster A, Hansen R, Kuppe H, Hetzer R, Crystal GJ, Mertzlufft F. Recombinant hirudin as an alternative for anticoagulation during cardiopulmonary bypass in patients with heparin-induced thrombocytopenia type II: a 1-year experience in 57 patients. J Cardiothorac Vasc Anesth 2000; 14: 243–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Koster A, Hansen R, Grauhan O, et al. Hirudin monitoring using the TAS ecarin clotting time in patients with heparin-induced thrombocytopenia type II. J Cardiothorac Vasc Anesth 2000; 14: 249–52.PubMedCrossRefGoogle Scholar
  112. 112.
    Greinacher A. The use of direct thrombin inhibitors in cardiovascular surgery in patients with heparin- induced thrombocytopenia. Semin Thromb Hemost 2004; 30: 315–27.PubMedCrossRefGoogle Scholar
  113. 113.
    Vasquez JC, Vichiendilokkul A, Mahmood S, Baciewicz FA. Anticoagulation with bivalirudin during cardiopulmonary bypass in cardiac surgery. Ann Thorac Surg 2002; 74: 2177–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Davis Z, Anderson R, Short D, Garber D, Valgiusti A. Favorable outcome with bivalirudin anticoagulation during cardiopulmonary bypass. Ann Thorac Surg 2003; 75: 264–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Koster A, Chew D, Grundel M, Bauer M, Kuppe H, Spiess BD. Bivalirudin monitored with the ecarin clotting time for anticoagulation during cardiopulmonary bypass. Anesth Analg 2003; 96: 383–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Kawada T, Kitagawa H, Hoson M, Okada Y, Shiomura J. Clinical application of argatroban as an alternative anticoagulant for extracorporeal circulation. Hematol Oncol Clin North Am 2000; 14: 445–57.PubMedCrossRefGoogle Scholar
  117. 117.
    Magnani H, Beijering R, Ten Cate J, Chong BH. Orgaran anticoagulation for cardiopulmonary bypass in patient with heparin-induced thrombocytopenia.In: Pifarre R (Ed.). New Anticoagulants for the Cardiovascular Patient. Philadelphia: Hanley & Belfus; 1997: 487–500.Google Scholar
  118. 118.
    Warkentin TE. Pork or beef? (Editorial). Ann Thorac Surg 2003; 75: 15–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Koster A, Meyer O, Fischer T, et al. One-year experience with the platelet glycoprotein IIb/IIIa antagonist tirofiban and heparin during cardiopulmonary bypass in patients with heparin-induced thrombocy- topenia type II. J Thorac Cardiovasc Surg 2001; 122: 1254–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Koster A, Chew D, Merkle F, et al. Extracorporeal elimination of large concentrations of tirofiban by zero-balanced ultrafiltration during cardiopulmonary bypass: an in vitro investigation. Anesth Analg 2004; 99: 989–92.PubMedCrossRefGoogle Scholar
  121. 121.
    Potzsch B, Klovekorn WP, Madlener K. Use of heparin during cardiopulmonary bypass in patients with a history of heparin-induced thrombocytopenia. N Engl J Med 2000; 343: 515.PubMedCrossRefGoogle Scholar
  122. 122.
    Lubenow N, Kempf R, Eichner A, Eichler P, Carlsson LE, Greinacher A. Heparin-induced thrombocytopenia: temporal pattern of thrombocytopenia in relation to initial use or reexposure to heparin. Chest 2002; 122: 37–42.PubMedCrossRefGoogle Scholar
  123. 123.
    Potzsch B, Madlener K. Management of cardiopulmonary-bypass anticoagulation in patient with heparin-induced thrombocytopenia.In: Warkentin TE, Greinacher A (Eds). Heparin-Induced Thrombocytopenia. New York: Marcel Dekker; 2001: 429–44.Google Scholar
  124. 124.
    Koster A, Kuppe H, Crystal GJ, Mertzlufft F. Cardiovascular surgery without cardiopulmonary bypass in patients with heparin-induced thrombocytopenia type II using anticoagulation with recombinant hirudin. Anesth Analg 2000; 90: 292–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Warkentin TE, Dunn GL, Cybulsky IJ. Off-pump coronary artery bypass grafting for acute heparin-induced thrombocytopenia. Ann Thorac Surg 2001; 72: 1730–2.PubMedCrossRefGoogle Scholar
  126. 126.
    Warkentin TE, Greinacher A. Heparin-induced thrombocytopenia and cardiac surgery. Ann Thorac Surg 2003; 76: 2121–31.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2006

Authors and Affiliations

  • André Vincentelli
    • 1
  • Brigitte Jude
    • 2
    • 4
  • Sylvain Bélisle
    • 3
  1. 1.Centre Hospitalier Régional Universitaire de Lille, Clinique de Chirurgie CardiovasculaireMontréalCanada
  2. 2.Institut ďHématologie-Transfusion;MontréalCanada
  3. 3.Département ďAnesthésiologie de ľUniversité de MontréalUniversité de Lille, Lille, France; and the Institut de Cardiologie de Montréal et Centre Hospitalier de ľUniversité de Montréal (CHUM)MontréalCanada
  4. 4.Laboratoire ďHématologieHôpital CardiologiqueLille cedexFrance

Personalised recommendations