Advertisement

Canadian Journal of Anesthesia

, Volume 54, Issue 1, pp 58–72 | Cite as

Brief review: Neuromuscular monitoring: an update for the clinician

  • Thomas M. HemmerlingEmail author
  • Nhien Le
Review Articles/Brief Reviews

Abstract

Purpose

To review established techniques and to provide an update on new methods for clinical monitoring of neuromuscular function relevant to anesthesia.

Source

A PubMed search of relevant article for the period 1985–2005 was undertaken, and bibliographies were scanned for additional sources.

Principal findings

There is no substitute for objective neuromuscular monitoring; for research purposes, mechanomyography (MMG) is the gold standard; however, the most versatile method in the clinical setting is acceleromyography since it can be applied at various muscles and has a long track record of clinical utility. Kinemyography is valid to monitor recovery of neuromuscular transmission at the adductor pollicis muscle (AP), whereas phonomyography is easy to apply to various muscles and shows promising agreement with MMG. Monitoring of the corrugator supercilii muscle (CS) may be used to determine the earliest time for tracheal intubation as it reflects laryngeal relaxation better than monitoring at the A P. Recovery of neuromuscular transmission is best monitored at the A P, since it is the last muscle to recover from neuromuscular blockade (NMB). If train-of-four (TOF) stimulation is used, a TOF-ratio > 0.9 should be the target before awakening the patient. If surgery or the type of anesthesia necessitates NMB of a certain degree, e.g., TOF-ratio = 0.25, monitoring of muscles which best reflect the degree of NMB at the surgical site is preferable.

Conclusion

Objective methods should be used to monitor neuromuscular function in clinical anesthesia. Acceleromyography offers the best compromise with respect to ease of use, practicality, versatility, precision and applicability at various muscles. The CS is the optimal muscle to determine the earliest time for intubation, e.g., for rapid sequence induction.

Keywords

Rocuronium Neuromuscular Blockade Atracurium Laryngeal Mask Airway Neuromuscular Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Article de synthèse court: Monitorage neuromusculaire: une mise à jour pour le clinicien

Résumé

Objectif

Faire le point sur les techniques établies et fournir une mise à jour sur les nouvelles méthodes de monitorage clinique de la fonction neuromusculaire pertinentes à l’anesthésie.

Source

Une recherche PubMed d’articles pertinents de la période 1985–2005 a été effectuée, et des bibliographies ont été fouillées afin d’obtenir des sources supplémentaires.

Constatations principales

Il n’existe pas de substitut pour le monitorage neuromusculaire objectif; à des fins de recherche, la méchanomyographie (MMG) est l’étalon or (« gold standard »); l’accéléromyographie est la méthode la plus polyvalente dans un environnement clinique, étant donné qu’elle peut être appliquée à divers muscles et a depuis longtemps fait ses preuves d’utilité clinique. La kinémyographie est valable pour surveiller la récupération de la transmission neuromusculaire au niveau du muscle adducteur du pouce (AP), alors que la phonomyographie est facile à appliquer à divers muscles et démontre un accord prometteur avec la MMG. Le monitorage du muscle sourcilier (CS) peut être utilisé afin de déterminer le temps le plus court pour l’intubation trachéale, étant donné qu’il reflète la curarisation du larynx mieux que le monitorage de l’AP. La récupération de la transmission neuromusculaire est le mieux surveillée au niveau de l’AP, vu que ce muscle est le dernier à se rétablir d’un blocage neuromusculaire (BNM). Si une stimulation en train-de-quatre (TOF) est utilisée, un ratio de TOF > 0,9 devrait être l’objectif avant de réveiller le patient. Si la chirurgie ou le type d’anesthésie nécessite un BNM d’un certain degré, par exemple, un ratio de TOF = 0,25, le monitorage des muscles qui reflète le mieux le degré de BNM au site chirurgical est préférable.

Conclusion

Des méthodes objectives devraient être utilisées pour le monitorage de la fonction neuromusculaire en anesthésie clinique. L’accéléromyographie offre le meilleur compromis si l’on considère la facilité d’utilisation, l’aspect pratique, la flexibilité, la précision ainsi que l’applicabilité à divers muscles. Le CS est le muscle optimal pour déterminer le temps le plus court pour l’intubation, par exemple lors d’une induction à séquence rapide.

References

  1. 1.
    Erhan E, Ugur G, Gunusen I, Alper I, Ozyar B. Propofol - not thiopental or etomidate - with remifentanil provides adequate intubating conditions in the absence of neuromuscular blockade. Can J Anesth 2003; 50: 108–15.PubMedGoogle Scholar
  2. 2.
    Klemola UM, Mennander S, Saarnivaara L. Tracheal intubation without the use of muscle relaxants: remifentanil or alfentanil in combination with propofol. Acta Anaesthesiol Scand 2000; 44: 465–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Stevens JB, Wheatley L. Tracheal intubation in ambulatory surgery patients: using remifentanil and propofol without muscle relaxants. Anesth Analg 1998; 86: 45–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Lieutaud T, Billard V, Khalaf H, Debaene B. Muscle relaxation and increasing doses of propofol improve intubating conditions. Can J Anesth 2003; 50: 121–6.PubMedGoogle Scholar
  5. 5.
    Mencke T, Echternach M, Kleinschmidt S, et al. Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology 2003; 98: 1049–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Naguib M, Samarkandi AH. The use of low-dose rocuronium to facilitate laryngeal mask airway insertion. Middle East J Anesthesiol 2001; 16: 41–54.PubMedGoogle Scholar
  7. 7.
    Hemmerling TM, Michaud G, Deschamps S, Trager G. ‘Patients who sing need to be relaxed’--neuromuscular blockade as a solution for air-leaking during intermittent positive pressure ventilation using LMA. Can J Anesth 2005; 52: 549.PubMedGoogle Scholar
  8. 8.
    Hemmerling TM, Beaulieu P, Jacobi KE, Babin D, Schmidt J. Neuromuscular blockade does not change the incidence or severity of pharyngolaryngeal discomfort after LMA anesthesia. Can J Anesth 2004; 51: 728–32.PubMedGoogle Scholar
  9. 9.
    Keller C, Brimacombe J. Influence of neuromuscular block, mode of ventilation and respiratory cycle on pharyngeal mucosal pressures with the laryngeal mask airway. Br J Anaesth 1999; 83: 480–2.PubMedGoogle Scholar
  10. 10.
    Williams MT, Rice I, Ewen SP, Elliott SM. A comparison of the effect of two anaesthetic techniques on surgical conditions during gynaecological laparoscopy. Anaesthesia 2003; 58: 574–8.PubMedCrossRefGoogle Scholar
  11. 11.
    King M, Sujirattanawimol N, Danielson DR, Hall BA, Schroeder DR, Warner DO. Requirements for muscle relaxants during radical retropubic prostatectomy. Anesthesiology 2000; 93: 1392–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Fruergaard K, Viby-Mogensen J, Berg H, el-Mahdy AM. Tactile evaluation of the response to double burst stimulation decreases, but does not eliminate, the problem of postoperative residual paralysis. Acta Anaesthesiol Scand 1998; 42: 1168–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Shorten GD, Merk H, Sieber T. Perioperative trainof -four monitoring and residual curarization. Can J Anaesth 1995; 42: 711–5.PubMedGoogle Scholar
  14. 14.
    Eriksson LI, Sundman E, Olsson R, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 1997; 87: 1035–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997; 41: 1095–103.PubMedCrossRefGoogle Scholar
  16. 16.
    Viby-Mogensen J. Postoperative residual curarization and evidence-based anaesthesia. Br J Anaesth 2000; 84: 301–3.PubMedGoogle Scholar
  17. 17.
    Pedersen T, Viby-Mogensen J, Bang U, Olsen NV, Jensen E, Engboek J. Does perioperative tactile evaluation of the train-of-four response influence the frequency of postoperative residual neuromuscular blockade? Anesthesiology 1990; 73: 835–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Viby-Mogensen J, Jensen NH, Engbaek J, Ording H, Skovgaard LT, Chraemmer-Jorgensen B. Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology 1985; 63: 440–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Saddler JM, Bevan JC, Donati F, Bevan DR, Pinto SR. Comparison of double-burst and train-of-four stimulation to assess neuromuscular blockade in children. Anesthesiology 1990; 73: 401–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Donati F, Plaud B, Meistelman C. A method to measure elicited contraction of laryngeal adductor muscles during anesthesia. Anesthesiology 1991; 74: 827–32.PubMedGoogle Scholar
  21. 21.
    Hemmerling TM, Michaud G, Babin D, Trager G, Donati F. Comparison of phonomyography with balloon pressure mechanomyography to measure contractile force at the corrugator supercilii muscle. Can J Anesth 2004; 51: 116–21.PubMedGoogle Scholar
  22. 22.
    Churchill-Davidson HC, Christie TH. The diagnosis of neuromuscular block in man. Br J Anaesth 1959; 31: 290–301.PubMedCrossRefGoogle Scholar
  23. 23.
    Engbaek J, Skovgaard LT, Friis B, Kann T, Viby-Mogensen J. Monitoring of the neuromuscular transmission by electromyography (I). Stability and temperature dependence of evoked EMG response compared to mechanical twitch recordings in the cat. Acta Anaesthesiol Scand 1992; 36: 495–504.PubMedCrossRefGoogle Scholar
  24. 24.
    Hemmerling TM, Schmidt J, Wolf T, Klein P, Jacobi K. Comparison of succinylcholine with two doses of rocuronium using a new method of monitoring neuromuscular block at the laryngeal muscles by surface laryngeal electromyography. Br J Anaesth 2000; 85: 251–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Hemmerling TM, Schmidt J, Wolf T, Wolf SR, Jacobi KE. Surface vs intramuscular laryngeal electromyography. Can J Anesth 2000; 47: 860–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Hemmerling TM, Schurr C, Walter S, Dern S, Schmidt J, Braun GG. A new method of monitoring the effect of muscle relaxants on laryngeal muscles using surface laryngeal electromyography. Anesth Analg 2000; 90: 494–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Dhonneur G, Kirov K, Slavov V, Duvaldestin P. Effects of an intubating dose of succinylcholine and rocuronium on the larynx and diaphragm: an electromyographic study in humans. Anesthesiology 1999; 90: 951–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Hemmerling TM, Schmidt J, Hanusa C, Wolf T, Jacobi KE. The lumbar paravertebral region provides a novel site to assess neuromuscular block at the diaphragm. Can J Anesth 2001; 48: 356–60.PubMedGoogle Scholar
  29. 29.
    Hemmerling TM, Schmidt J, Wolf T, Hanusa C, Siebzehnruebl E, Schmitt H. Intramuscular versus surface electromyography of the diaphragm for determining neuromuscular blockade. Anesth Analg 2001; 92: 106–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Harper NJ, Bradshaw EG, Healy TE. Evoked electromyographic and mechanical responses of the adductor pollicis compared during the onset of neuromuscular blockade by atracurium or alcuronium, and during antagonism by neostigmine. Br J Anaesth 1986; 58: 1278–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Pugh ND, Kay B, Healy TE. Electromyography in anaesthesia. A comparison between two methods. Anaesthesia 1984; 39: 574–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Donati F, Meistelman C, Plaud B. Vecuronium neuromuscular blockade at the diaphragm, the orbicularis oculi, and adductor pollicis muscles. Anesthesiology 1990; 73: 870–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Mellinghoff H, Diefenbach C, Arhelger S, Buzello W. Mechanomyography and electromyography-2 competing methods of relaxometry using vecuronium (German). Anasth Intensivther Notfallmed 1989; 24: 57–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakata Y, Goto T, Saito H, et al. Comparison of acceleromyography and electromyography in vecuroniuminduced neuromuscular blockade with xenon or sevoflurane anesthesia. J Clin Anesth 1998; 10: 200–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Tammisto T, Wirtavuori K, Linko K. Assessment of neuromuscular block: comparison of three clinical methods and evoked electromyography. Eur J Anaesthesiol 1988; 5: 1–8.PubMedGoogle Scholar
  36. 36.
    Hofmockel VR, Benad G, Pohl B, Brahmstedt R. Measuring muscle relaxation with mivacurium in comparison with mechano- and electromyography (German). Anaesthesiol Reanim 1998; 23: 72–80.PubMedGoogle Scholar
  37. 37.
    Engbaek J, Roed J, Hangaard N, Viby-Mogensen J. The agreement between adductor pollicis mechanomyogram and first dorsal interosseous electromyogram. A pharmacodynamic study of rocuronium and vecuronium. Acta Anaesthesiol Scand 1994; 38: 869–78.PubMedCrossRefGoogle Scholar
  38. 38.
    Pansard JL, Chauvin M, Lebrault C, Gauneau P, Duvaldestin P. Effect of an intubating dose of succinylcholine and atracurium on the diaphragm and the adductor pollicis muscle in humans. Anesthesiology 1987; 67: 326–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Chauvin M, Lebrault C, Duvaldestin P. The neuromuscular blocking effect of vecuronium on the human diaphragm. Anesth Analg 1987; 66: 117–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Kirkegaard-Nielsen H, Helbo-Hansen HS, Lindholm P, Pedersen HS, Severinsen IK, Schmidt MB. New equipment for neuromuscular transmission monitoring: a comparison of the TOF-Guard with the Myograph 2000. J Clin Monit Comput 1998; 14: 19–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Dahaba AA, Rehak PH, List WF. Assessment of accelerography with the TOF-GUARD: a comparison with electromyography. Eur J Anaesthesiol 1997; 14: 623–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Hemmerling TM, Donati F, Beaulieu P, Babin D. Phonomyography of the corrugator supercilii muscle: signal characteristics, best recording site and comparison with acceleromyography. Br J Anaesth 2002; 88: 389–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Kopman AF, Chin W, Cyriac J. Acceleromyography vs. electromyography: an ipsilateral comparison of the indirectly evoked neuromuscular response to train-of- four stimulation. Acta Anaesthesiol Scand 2005; 49: 316–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Motamed C, Kirov K, Combes X, Duvaldestin P. Comparison between the Datex-Ohmeda M-NMT module and a force-displacement transducer for monitoring neuromuscular blockade. Eur J Anaesthesiol 2003; 20: 467–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Hemmerling TM, Donati F. The M-NMT mechanosensor cannot be considered as a reliable clinical neuromuscular monitor in daily anesthesia practice. Anesth Analg 2002; 95: 1826–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Grimaldi FM. Physicomathesis de Lumine. 1665.Google Scholar
  47. 47.
    Frangioni JV, Kwan-Gett TS, Dobrunz LE, McMahon TA. The mechanism of low-frequency sound production in muscle. Biophys J 1987; 51: 775–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Dascalu A, Geller E, Moalem Y, Manoah M, Enav S, Rudick Z. Acoustic monitoring of intraoperative neuromuscular block. Br J Anaesth 1999; 83: 405–9.PubMedGoogle Scholar
  49. 49.
    Bellemare F, Couture J, Donati F, Plaud B. Temporal relation between acoustic and force responses at the adductor pollicis during nondepolarizing neuromuscular block. Anesthesiology 2000; 93: 646–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Hemmerling TM, Babin D, Donati F. Phonomyography as a novel method to determine neuromuscular blockade at the laryngeal adductor muscles: comparison with the cuff pressure method. Anesthesiology 2003; 98: 359–63.PubMedCrossRefGoogle Scholar
  51. 51.
    Hemmerling TM, Michaud G, Trager G, Deschamps S, Babin D, Donati F. Phonomyography and mechanomyography can be used interchangeably to measure neuromuscular block at the adductor pollicis muscle. Anesth Analg 2004; 98: 377–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Engbaek J, Ostergaard D, Viby-Mogensen J. Double burst stimulation (DBS): a new pattern of nerve stimulation to identify residual neuromuscular block. Br J Anaesth 1989; 62: 274–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Ueda N, Viby-Mogensen J, Engbaek J, et al. New stimulation pattern for manual evaluation of neuromuscular transmission--double burst stimulation (DBS) (Japanese). Masui 1988; 37: 716–21.PubMedGoogle Scholar
  54. 54.
    Viby-Mogensen J, Howardy-Hansen P, ChraemmerJorgensen B, Ording H, Engbaek J, Nielsen A. Posttetanic count (PTC): a new method of evaluating an intense nondepolarizing neuromuscular blockade. Anesthesiology 1981; 55: 458–61.PubMedGoogle Scholar
  55. 55.
    Muchhal KK, Viby-Mogensen J, Fernando PU, Tamilarasan A, Bonsu AK, Lambourne A. Evaluation of intense neuromuscular blockade caused by vecuronium using posttetanic count (PTC). Anesthesiology 1987; 66: 846–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Wright PM, Caldwell JE, Miller RD. Onset and duration of rocuronium and succinylcholine at the adductor pollicis and laryngeal adductor muscles in anesthetized humans. Anesthesiology 1994; 81: 1110–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Debaene B, Lieutaud T, Billard V, Meistelman C. ORG 9487 neuromuscular block at the adductor pollicis and the laryngeal adductor muscles in humans. Anesthesiology 1997; 86: 1300–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim KS, Chung CW, Shin WJ. Cisatracurium neuromuscular block at the adductor pollicis and the laryngeal adductor muscles in humans. Br J Anaesth 1999; 83: 483–4.PubMedGoogle Scholar
  59. 59.
    Kirov K, Motamed C, Decailliot F, Behforouz N, Duvaldestin P. Comparison of the neuromuscular blocking effect of cisatracurium and atracurium on the larynx and the adductor pollicis. Acta Anaesthesiol Scand 2004; 48: 577–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Cantineau JP, Porte F, d’Honneur G, Duvaldestin P. Neuromuscular effects of rocuronium on the diaphragm and adductor pollicis muscles in anesthetized patients. Anesthesiology 1994; 81: 585–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Hemmerling TM, Schmidt J, Schurr C, Breuer G, Jacobi KE. A comparison between anterior and posterior monitoring of neuromuscular blockade at the diaphragm: both sites can be used interchangeably. Anesth Analg 2002; 95: 940–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Rimaniol JM, Dhonneur G, Sperry L, Duvaldestin P. A comparison of the neuromuscular blocking effects of atracurium, mivacurium, and vecuronium on the adductor pollicis and the orbicularis oculi muscle in humans. Anesth Analg 1996; 83: 808–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Abdulatif M, el-Sanabary M. Blood flow and mivacurium -induced neuromuscular block at the orbicularis oculi and adductor pollicis muscles. Br J Anaesth 1997; 79: 24–8.PubMedGoogle Scholar
  64. 64.
    Plaud B, Debaene B, Donati F. The corrugator supercilii, not the orbicularis oculi, reflects rocuronium neuromuscular blockade at the laryngeal adductor muscles. Anesthesiology 2001; 95: 96–101.PubMedCrossRefGoogle Scholar
  65. 65.
    Plaud B, Debaene B, Lequeau F, Meistelman C, Donati F. Mivacurium neuromuscular block at the adductor muscles of the larynx and adductor pollicis in humans. Anesthesiology 1996; 85: 77–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Krarup C. Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle. J Physiol 1981; 311: 355–72.PubMedGoogle Scholar
  67. 67.
    Ritchie JM, Wilkie DR. The effect of previous stimulation on the active state of muscle. J Physiol 1955; 130: 488–96.PubMedGoogle Scholar
  68. 68.
    Moore RL, Houston ME, Iwamoto GA, Stull JT. Phosphorylation of rabbit skeletal muscle myosin in situ. J Cell Physiol 1985; 125: 301–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Manning DR, Stull JT. Myosin light chain phosphorylation -dephosphorylation in mammalian skeletal muscle. Am J Physiol 1982; 242: C234–41.PubMedGoogle Scholar
  70. 70.
    Persechini A, Stull JT, Cooke R. The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem 1985; 260: 7951–4.PubMedGoogle Scholar
  71. 71.
    Kopman AF, Kumar S, Klewicka MM, Neuman GG. The staircase phenomenon: implications for monitoring of neuromuscular transmission. Anesthesiology 2001; 95: 403–7.PubMedCrossRefGoogle Scholar
  72. 72.
    McCoy EP, Mirakhur RK, Connolly FM, Loan PB. The influence of the duration of control stimulation on the onset and recovery of neuromuscular block. Anesth Analg 1995; 80: 364–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Girling KJ, Mahajan RP. The effect of stabilization on the onset of neuromuscular block when assessed using accelerometry. Anesth Analg 1996; 82: 1257–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Van Lunteren E, Vafaie H. Force potentiation in respiratory muscles: comparison of diaphragm and sternohyoid. Am J Physiol 1993; 264: R1095–1100.PubMedGoogle Scholar
  75. 75.
    Krarup C. Electrical and mechanical responses in the platysma and in the adductor pollicis muscle: in normal subjects. J Neurol Neurosurg Psychiatry 1977; 40: 234–40.PubMedCrossRefGoogle Scholar
  76. 76.
    Deschamps S, Trager G, Mathieu PA, Hemmerling TM. The staircase phenomenon at the corrugator supercilii muscle in comparison with the hand muscles. Br J Anaesth 2005; 95: 372–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Hemmerling TM, Donati F. Neuromuscular blockade at the larynx, the diaphragm and the corrugator supercilii muscle: a review. Can J Anesth 2003; 50: 779–94.PubMedGoogle Scholar
  78. 78.
    Girling KJ, Bedforth NM, Spendlove JL, Mahajan RP. Assessing neuromuscular block at the larynx: the effect of change in resting cuff pressure and a comparison with video imaging in anesthetized humans. Anesth Analg 1999; 88: 426–31.PubMedCrossRefGoogle Scholar
  79. 79.
    Derrington MC, Hindocha N. Measurement of evoked diaphragm twitch strength during anaesthesia. Adaptation and evaluation of an existing technique. Br J Anaesth 1988; 61: 270–8.PubMedCrossRefGoogle Scholar
  80. 80.
    McKenzie DK, Gandevia SC. Phrenic nerve conduction times and twitch pressures of the human diaphragm. J Appl Physiol 1985; 58: 1496–504.PubMedGoogle Scholar
  81. 81.
    Lebrault C, Chauvin M, Guirimand F, Duvaldestin P. Relative potency of vecuronium on the diaphragm and the adductor pollicis. Br J Anaesth 1989; 63: 389–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Hemmerling TM, Schmidt J, Hanusa C, Wolf T, Schmitt H. Simultaneous determination of neuromuscular block at the larynx, diaphragm, adductor pollicis, orbicularis oculi and corrugator supercilii muscles. Br J Anaesth 2000; 85: 856–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Saitoh Y, Fujii Y, Takahashi K, Makita K, Tanaka H, Amaha K. Recovery of post-tetanic count and train-of- four responses at the great toe and thumb. Anaesthesia 1998; 53: 244–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Kitajima T, Ishii K, Kobayashi T, Ogata H. Differential effects of vecuronium on the thumb and great toe as measured by accelography and electromyography. Anaesthesia 1995; 50: 76–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Kitajima T, Ishii K, Ogata H. Assessment of neuromuscular block at the thumb and great toe using accelography in infants. Anaesthesia 1996; 51: 341–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Heier T, Hetland S. A comparison of train-of-four monitoring: mechanomyography at the thumb vs acceleromyography at the big toe. Acta Anaesthesiol Scand 1999; 43: 550–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Kern SE, Johnson JO, Orr JA, Westenskow DR. Clinical analysis of the flexor hallucis brevis as an alternative site for monitoring neuromuscular block from mivacurium. J Clin Anesth 1997; 9: 383–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Goat VA, Yeung ML, Blakeney C, Feldman SA. The effect of blood flow upon the activity of gallamine triethiodide. Br J Anaesth 1976; 48: 69–73.PubMedCrossRefGoogle Scholar
  89. 89.
    Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 1973; 18: 111–29.PubMedCrossRefGoogle Scholar
  90. 90.
    Saitoh Y, Nakajima H, Hattori H, Aoki K, Katayama T, Murakawa M. Neuromuscular blockade can be assessed accelerographically over the vastus medialis muscle in patients positioned prone. Can J Anesth 2003; 50: 342–7.PubMedGoogle Scholar
  91. 91.
    Michand G, Trager G, Deschamps S, Hemmerling TM. Monitoring neuromuscular blockade at the vastus medialis muscle using phonomyography. Can J Anesth 2005; 52: 795–800.Google Scholar

Copyright information

© Canadian Anesthesiologists 2007

Authors and Affiliations

  1. 1.Neuromuscular Research Group (NRG), Department of AnesthesiologyMontreal General Hospital, McGill UniversityMontrealCanada
  2. 2.Institut de Génie BiomédicalUniversité de MontréalMontrealCanada
  3. 3.Anaesthesia DepartmentMcGill University Health Centre (MUHC), Montreal General HospitalMontrealCanada

Personalised recommendations