Advertisement

Ocean Science Journal

, Volume 42, Issue 4, pp 211–222 | Cite as

Comparison of marine insolation estimating methods in the adriatic sea

  • Do -Seong Byun
  • Nadia Pinardi
Article

Abstract

We compare insolation results calculated from two well-known empirical formulas (Seckel and Beaudry’s SB73 formula and the original Smithsonian (SMS) formula) and a radiative transfer model using input data predicted from meteorological weather-forecast models, and review the accuracy of each method. Comparison of annual mean daily irradiance values for clear-sky conditions between the two formulas shows that, relative to the SMS, the SB73 underestimates spring values by 9 W m-2 in the northern Adriatic Sea, although overall there is a good agreement between the annual results calculated with the two formulas. We also elucidate the effect on SMS of changing the ‘Sun-Earth distance factor (f)’, a parameter which is commonly assumed to be constant in the oceanographic context. Results show that the mean daily solar radiation for clear-sky conditions in the northern Adriatic Sea can be reduced as much as 12 W m-2 during summer due to a decrease in thef value. Lastly, surface irradiance values calculated from a simple radiative transfer model (GM02) for clear-sky conditions are compared to those from SB73 and SMS. Comparison within situ data in the northern Adriatic Sea shows that the GM02 estimate gives more realistic surface irradiance values than SMS, particularly during summer. Additionally, irradiance values calculated by GM02 using the buoy meteorological fields and ECMWF (The European Centre for Medium Range Weather Forecasts) meteorological data show the suitability of the ECMWF data usage. Through tests of GM02 sensitivity to key regional meteorological factors, we explore the main factors contributing significantly to a reduction in summertime solar irradiance in the Adriatic Sea.

Key words

radiative transfer model heat-flux irradiance Adriatic Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almorox, J., C. HontoriaM. Benito. 2005. Statistical validation of daylength definitions for estimation of global solar radiation in Toledo, Spain.Energ. Convers. Manage.,46, 1465–1471.CrossRefGoogle Scholar
  2. Angelucci, M.G, N. Pinardi, and S. Castellari. 1998. Air-sea fluxes from operational analyses fields: intercomparison between ECMWF and NCEP analyses over the Mediterranean Area.Phys. Chem. Earth,23, 569–574.CrossRefGoogle Scholar
  3. Bird, R.E. and C. Riordan. 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and titled planes at the earth’s surface for cloudless atmospheres.J. Appl. Meteorol,25, 87–97.CrossRefGoogle Scholar
  4. Blanco-Muriel, M., D.C. Alarcon-Padilla, T. Lopez-Moratalla, and M. Lara-Coira. 2001. Computing the solar vector.Solar Energy,70, 431–441.CrossRefGoogle Scholar
  5. Bretagnon,P. and G Francou. 1988. Planetary theories in rectangular and spherical variables - VSOP87 solutions, Astron.Astroph.,202, 309–315.Google Scholar
  6. Byun, D.-S. and Y.-K. Cho. 2006. Estimation of the PAR irradiance ratio and its variability under clear-sky conditions at Ieodo in the East China Sea,Ocean Science Journal,41, 235–244.CrossRefGoogle Scholar
  7. Cardin, V. and M. Gačić. 2003. Long-term heat flux variability and winter convection in the Adriatic Sea.J. Geophys. Res.,108, C9, 8103, doi:10.1029/2002JC001645.CrossRefGoogle Scholar
  8. Castellari, S., N. Pinardi, and K. Leaman. 1998. A model study of air-sea interactions in the Mediterranean Sea.J. Mar. Syst.,18, 89–114.CrossRefGoogle Scholar
  9. Castellari, S., N. Pinardi, and K. Leaman. 2000. Simulation of water mass formation processes in the Mediterranean Sea: Influence of the time frequency of the atmospheric forcing.J. Geophys. Res.,105, 24157–24181.CrossRefGoogle Scholar
  10. Chiggiato, J., M. Zavatarelli, S. Castellari, and M. Deserti. 2005. Interannual variability of surface hear fluxes in the Adriatic Sea in the period 1998–2001 and comparison with observations.Sci. Total Environ.,353, 89–102.CrossRefGoogle Scholar
  11. Cooper, P.I. 1969. The absorption of solar radiation in solar stills.Solar Energy,12, 333–346.CrossRefGoogle Scholar
  12. Colijn, F. and G C. Cadée. 2003. Is phytoplankton growth in the Wadden Sea light or nitrogen limited?J. Sea Res.,49, 83–93.CrossRefGoogle Scholar
  13. Fouquart, Y., B. Bonnel, G Brogniez, J.C. Buriez, L. Smith, J.J. Morcrette, and A. Cerf 1987. Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part II: Broadband Radiative Characteristics of the Aerosols and Vertical Radiative Flux Divergence.J. Appl. Meteorol.,26, 38–52.CrossRefGoogle Scholar
  14. Frouin, R., D.W. Lingner, C. Gautier, K.S. Baker, and R.C. Smith. 1989. A simple analytical formula to compute clear sky total and photo synthetically available solar irradiance at the ocean surface.J. Geophys. Res.,94, 9731–9742.CrossRefGoogle Scholar
  15. Frouin, R., M. Schwindling, and P.-Y Deschamps. 1996. Spectral reflectance of sea foam in the visible and near-infrared: In site measurements and remote sensing implications.J. Geophys. Res.,101, 14361–14371.CrossRefGoogle Scholar
  16. Garrett, C, R. Outerbridge, and K. Thompson. 1993. Interannual variability in Mediterranean Heat and Buoyancy Fluxes.J. Climate,6, 900–910.CrossRefGoogle Scholar
  17. GilmanC. and C. Garrett. 1994. Heat flux parameterizations for the Mediterranean Sea: The role of atmospheric aerosols and constraints from the water budget.J. Geophys. Res.,99, 5119–5134.CrossRefGoogle Scholar
  18. Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, and W. W. Broenkow. 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates.Appl. Opt.,22, 20–36.CrossRefGoogle Scholar
  19. Gregg, W.W. and K.L. Carder. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres.Limnol. Oceanogr.,35, 1657–1675. Gregg, W.W. 2002. A coupled ocean-atmosphere radiative model for global ocean biogeochemical models. Technical report series on global modeling and data assimilation 22, ed. by M.Google Scholar
  20. Suarez, NASA/TM---2002-10460, 19 p. Gueymard, C. 1994. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States.Solar Energy,53, 57–71.Google Scholar
  21. Gueymard, C. 2001. Parameterized transmittance model for direct beam and circumsolar spectral irradiance.Solar Energy,71, 325–346.CrossRefGoogle Scholar
  22. Gueymard, C. 2004. The sun’s total and spectral irradiance for solar energy applications and solar radiation models.Solar Energy,76, 423–453.CrossRefGoogle Scholar
  23. Jacovides, C.P., F.S. Tymvios, D.N. Asimakopoulos, K.M. Theofilou, and S. Pashiardes. 2003. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin.Theor. Appl. Climatol.,74, 227–233.CrossRefGoogle Scholar
  24. Justus, C.G. and M.V. Paris. 1985. A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere.J. Clim. Appl. Meteorol.,24, 193–205.CrossRefGoogle Scholar
  25. Kasten, F. and A.T. Young. 1989. Revised optical air mass tables and approximation formula.Appl. Opt.,28, 4735.CrossRefGoogle Scholar
  26. Leckner, B. 1978. The spectral distribution of solar radiation at the earth’s surface — Elements of a model.Solar Energy,20, 143–150.CrossRefGoogle Scholar
  27. List, R.J. 1958. Smithsonian Meteorological Tables. Smithsonian Inst., Washington, D.C. 527 p.Google Scholar
  28. Liu, C.-C., K.L. Carder, R.L. Miller, and J.E. Ivey. 2002. Fast and accurate model of underwater scalar irradiance.Appl. Opt.,41, 4962–4974.CrossRefGoogle Scholar
  29. Maggiore, A., M. Zavatarelli, M.G. Angelucci, and N. Pinardi. 1998. Surface heat and water fluxes in the Adriatic Sea: Seasonal and interannual variability.Phys. Chem. Earth,23, 561–567.CrossRefGoogle Scholar
  30. Michalsky, J.J. 1988. The Astronomical almanac’s algorithm for approximate solar position (1950–2050).Solar Energy,40, 227–235.CrossRefGoogle Scholar
  31. Okulov, O., H. Ohvril, and R. Kivi. 2002. Atmospheric precipitable water in Estonia, 1990–2001.Bor. Env. Res.,7, 291–300.Google Scholar
  32. Paltridge, G. W. and C. M. R. Platt. 1976. Radiative Processes in Meteorology and Climatology. Elsevier Sci. 318 p.Google Scholar
  33. Parsons, T.R., M. Takahashi, and B. Hargrave. 1984. Biological oceanographic processes. Pergamon, Oxford. 330 p.Google Scholar
  34. Pinardi, N., I. Allen, E. Demirov, P. De Mey, G. Korres, A. Lascaratos, P-Y. Le Traon, C. Maillard, and C. Tziavos. 2003. The Mediterranean ocean forecasting system: First phase of implementation (1998–2001).Ann. Geophys.,21, 3–20.CrossRefGoogle Scholar
  35. Reed, R.K. 1977. On estimating insolation over the ocean.J. Phys. Oceanogr.,7, 482–485.CrossRefGoogle Scholar
  36. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle. 1998. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere.Bull. Am. Meteorol. Soc.,79, 2101–2114.CrossRefGoogle Scholar
  37. Rosati, A. and K. Miyakoda. 1988. A general circulation model for upper ocean simulation.J. Phys. Oceanogr.,18,1601–1626.CrossRefGoogle Scholar
  38. Schiano, M.E. 1996. Insolation over the western Mediterranean Sea: A comparison of direct measurements and Reed’s formula.J. Geophys. Res.,101, 3831–3838.CrossRefGoogle Scholar
  39. Seckel, GR. and F.H. Beaudry. 1973. The radiation from sun and sky over the North Pacific Ocean (abstract).EOS Trans, AGV.,54,1114.Google Scholar
  40. Simpson, J.J. and C.A. Paulson. 1979. Mid-ocean observations of atmospheric radiation,Q.J.R. Meteor. Soc.,105, 487–502.CrossRefGoogle Scholar
  41. Spencer, J.W. 1971.Fourier series representation of the position of the Sun.Search 2(5), 172.Google Scholar
  42. Tetens, O. 1930. Über einige meteorologische Begriffe.Z. Geophys.,6, 297–309.Google Scholar
  43. Tragou, E. and A. Lascaratos. 2003. Role of aerosols on the Mediterranean solar radiation.J. Geophys. Res.,108, C2, 3025, doi: 10.1029/2001JC001258.CrossRefGoogle Scholar
  44. Van Heuklon, T.K. 1979. Estimating atmospheric ozone for solar radiation models.Solar Energy,22, 63–68.CrossRefGoogle Scholar
  45. Wang, X.H.2005. Circulation and heat budget of the northern Adriatic Sea (Italy) due to a Bora event in January 2001: A numerical model study.Ocean Modelling,10,253–271.CrossRefGoogle Scholar
  46. Wen, G, R.F. Cahalan, and B.N. Holben. 2003. Limitations of ground-based solar irradiance estimates due to atmospheric variations.J. Geophys. Res.,108, D14, 4400, doi:10.1029/ 2003JD003431.Google Scholar

Copyright information

© Korea Ocean Research and Development Institute(KORDI) and the Korean Society of Oceanography(KSO) 2007

Authors and Affiliations

  1. 1.Ocean Research LaboratoryNational Oceanographic Research InstituteIncheonKorea
  2. 2.Alma Mater Studiorum Università di Bologna, Centro Interdipartimentale per la Ricerca sulle Scienze AmbientaliRavennaItaly

Personalised recommendations