Canadian Journal of Anaesthesia

, Volume 48, Issue 2, pp 121–128 | Cite as

Gastric air tonometry during laparoscopic cholecystectomy: a comparison of two PaCO2 levels

  • Marja-Tellervo Mäkinen
  • Pertti O. Heinonen
  • Ulla-Maija Klemola
  • Arvi Yli-Hankala
General Anesthesia


Purpose: Pneumoperitoneum can cause disturbances in acid-base balance and splanchnic perfusion. We studied the effect of ventilation on acid-base balance and gastric mucosal tonometric values in patients undergoing laparoscopic cholecystectomy.

Methods: Twenty-four patients (ASA I–II) were randomly allocated into two groups. In the fixed ventilation group, ventilation was constant allowing free increase in PCO2, while in the constant CO2 group end-tidal PCO2 was fixed with ventilatory adjustment. Intraabdominal pressure was limited to 12 mmHg. Arterial acid-base balance, automated air tonometric variables and gastric mucosal to arterial PCO2 gap were determined frequently from anesthesia induction until three hours postoperatively.

Results: During pneumoperitoneum, in the fixed ventilation group arterial PCO2 changed from 5.0±0.2 to 6.6±0.4 kPa and pH from 7.43±0.03 to 7.33±0.04, tonometric PCO2 from 5.1±0.5 to 6.9±0.4 and pH from 7.44±0.04 to 7.33±0.04. In the constant CO2 group these variables remained at control levels (P<0.01 between groups). The PCO2 gap remained unchanged without any differences between the groups. In the recovery room all measured variables were within normal range in both groups.

Conclusion: Despite inter-group differences in arterial and tonometric PCO2 and pH values during CO2 pneumoperitoneum, the patients did not develop splanchnic hypoperfusion detectable by air tonometric method, as indicated by normal PCO2 gap in both groups throughout the study.


Laparoscopic Cholecystectomy Remifentanil Recovery Room Intraabdominal Pressure Gastric Tonometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Objectif: Le pneumopéritoine peut causer des perturbations de l’équilibre acido-basique et de l’irrigation splanchnique. Nous avons étudié l’effet de la ventilation sur l’équilibre acido-basique et la tonométrie de la muqueuse gastrique chez des patients devant subir une cholécystectomie laparoscopique.

Méthode: Vingt-quatre patients (ASA I–II) ont été répartis au hasard en deux groupes. Dans le premier groupe, à ventilation fixe, la ventilation était constante et permettait une augmentation libre de la PCO2, tandis que dans le second groupe, au CO2 constant, la PCO2 de fin d’expiration était fixe par ventilation adaptée. La pression intraabdominale était limitée à 12 mmHg. L’équilibre acido-basique artériel, les variables automatisées de la tonométrie gazeuse de la muqueuse gastrique, pour calculer l’écart de PCO2 artériel, ont été déterminés fréquemment depuis l’induction de l’anesthésie jusqu’à trois heures après l’opération.

Résultats: Pendant le pneumopéritoine, dans le groupe à ventilation fixe, la PCO2 artérielle est passée de 5,0±0,2 à 6,6±0,4 kPa et le pH de 7,43±0,03 à 7,33±0,04; la PCO2 tonométrique est passée de 5,1±0,5 à 6,9±0,4 et le pH de 7,44±0,04 à 7,33±0,04. Dans le groupe au CO2 constant, ces variables ont conservé les valeurs témoins (P<0,01 intergroupe). L’écart de PCO2 est demeuré inchangé et sans différence intergroupe. Dans la salle de réveil, toutes les variables mesurées étaient dans les limites de la normale pour les patients des deux groupes.

Conclusion: Malgré des différences intergroupes de PCO2, artérielle et tonométrique, et de pH pendant le pneumopéritoine au CO2, les patients n’ont pas présenté d’hypoperfusion splanchnique détectable par tonométrie gazeuse, comme l’indique l’écart normal de PCO2 chez les patients des deux groupes.


  1. 1.
    Desmond J, Gordon RA. Ventilation in patients anaesthetized for laparoscopy. Can J Anaesth 1970; 17: 378–87.CrossRefGoogle Scholar
  2. 2.
    Gándara V, de Vega DS, Escriú N, Zorrilla IG. Acidbase balance alterations in laparoscopic cholecystectomy. Surg Endosc 1997; 11: 707–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Hodgson C, McClelland RMA, Newton JR. Some effects of the peritoneal insufflation of carbon dioxide at laparoscopy. Anaesthesia 1970; 25: 382–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Beebe DS, McNevin MP, Crain JM, et al. Evidence of venous stasis after abdominal insufflation for laparoscopic cholecystectomy. Surg Gynecol Obstet 1993; 176: 443–7.PubMedGoogle Scholar
  5. 5.
    Joris JL, Noirot DP, Legrand MJ, Jacquet NJ, Lamy ML. Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg 1993; 76: 1067–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Schilling MK, Redaelli C, Krähenbühl L, Signer C, Büchler MW. Splanchnic microcirculaory changes during CO2 laparoscopy. J Am Coll Surg 1997; 184: 378–82.PubMedGoogle Scholar
  7. 7.
    Fiddian-Green RG, Baker S. Predictive value of the stomach wall pH for complications after cardiac operations: comparison with other monitoring. Crit Care Med 1987; 15: 153–6.PubMedGoogle Scholar
  8. 8.
    Heinonen PO, Jousela IT, Blomqvist KA, Olkkkola KT, Takkunen OS. Validation of air tonometric measurement of gastric regional concentrations of CO2 in critically ill septic patients. Intensive Care Med 1997; 23: 524–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Eleftheriadis E, Kotzampassi K, Botsios D, Tzartinoglou E, Farmakis H, Dadoukis J. Splanhnic ischemia during laparoscopic cholecystectomy. Surg Endosc 1996; 10: 324–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Koivusalo A-M, Kellokumpu I, Ristkari S, Lindgren L. Splanchnic and renal deterioration during and after laparoscopic cholecystectomy: a comparison of the carbon dioxide pneumoperitoneum and the abdominal wall lift method. Anesth Analg 1997; 85: 886–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Thaler W, Frey L, Marzoli GP, Messmer K. Assessment of splanchnic tissue oxygenation by gastric tonometry in patients undergoing laparoscopic and open cholecystectomy. Br J Surg 1996; 83: 620–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Takala J. Appliquide, Gastrointestinal Tonometry, 894796/PG5/0997© Datex-Engström Division, Instrumentarium Corp., Finland, 1997.Google Scholar
  13. 13.
    Kolkmann JJ, Otte JA, Groeneveld ABJ. Gastrointestinal luminal PCO2 tonometry: an update on physiology, methodology and clinical applications. Br J Anaesth 2000; 84:74–86.Google Scholar
  14. 14.
    Kolkman JJ, Steverink PJGM, Groeneveld ABJ, Meuwissen SGM. Characteristics of time-dependent PCO2 tonometry in the normal human stomach. Br J Anaesth 1998; 81: 669–75.PubMedGoogle Scholar
  15. 15.
    Heard SO, Helsmoortel CM, Kent JC, Shahnarian A, Fink MP. Gastric tonometry in healthy volunteers: effect of ranitidine on calculated intramural pH. Crit Care Med 1991; 19: 271–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Mäkinen M-T. Comparison of body temperature changes during laparoscopic and open cholecystectomy. Acta Anaesthesiol Scand 1997; 41: 736–40.PubMedGoogle Scholar
  17. 17.
    Wurst H, Schulte-Steinberg H, Finsterer U. Zur Frage der CO2-Speicherung bei laparoskopischer Cholezystektomie mit CO2-Pneumoperitoneum. Anaesthesist 1995; 44: 147–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Wahba RWM, Mamazza J. Ventilatory requirements during laparoscopic cholecystectomy. Can J Anaesth 1993; 40: 206–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Koivusalo A-M, Kellokumpu I, Lindgren L. Gasless laparoscopic cholecystectomy: comparison of postoperative recovery with conventional technique. Br J Anaesth 1996; 77: 576–80.PubMedGoogle Scholar
  20. 20.
    Kazama T, Ikeda K, Kato T, Kikura M. Carbon dioxide output in laparoscopic surgery. Br J Anaesth 1996; 76: 530–5.PubMedGoogle Scholar
  21. 21.
    Taura P, Lopez A, Lacy AM, et al. Prolonged pneumoperitoneum at 15 mmHg causes lactic acidosis. Surg Endosc 1998; 12: 198–201.PubMedCrossRefGoogle Scholar
  22. 22.
    Von Montigny S, Laterre P-F, Vanderelst P, De Kock M. The effects of intraoperative intravenous clonidine on gastric intramucosal PCO2. Anesth Analg 1998; 87: 686–90.CrossRefGoogle Scholar
  23. 23.
    Odeberg S, Ljungqvist O, Sollevi A. Pneumoperitoneum for laparoscopic cholecystectomy is not associated with compromised splanchnic circulation. Eur J Surg 1998; 164: 843–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Wallace DH, Serpell MG, Baxter JN, O’Dwyer PJ. Randomized trial of different insufflation pressures for laparoscopic chplecystectomy. Br J Surg 1997: 84: 455–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Hashimoto S, Hashikura Y, Munakata Y, et al. Changes in the cardiovascular and respiratory systems during laparoscopic cholecystectomy. J Laparoendosc Surg 1993: 3: 535–9.PubMedGoogle Scholar
  26. 26.
    Elliott S, Savill P, Eckersall S. Cardiovascular changes during laparoscopic cholecystectomy: a study using transesophageal Doppler monitoring. Eur J Anaesth 1998; 15: 50–5.CrossRefGoogle Scholar
  27. 27.
    Bernardin G, Lucas P, Hyvernat H, Deloffre P, Mattei M. Influence of alveolar ventilation changes on calculated gastric intramucosal pH and gastric-arterial PCO2 difference. Intensive Care Med 1999; 25: 269–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J. The Haldane effect — an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 1999; 83: 740–6.PubMedGoogle Scholar
  29. 29.
    Tang W, Weil MH, Sun S, Noc M, Gazmuri RJ, Bisera J. Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic schock. J Appl Physiol 1994; 76: 572–7.PubMedGoogle Scholar
  30. 30.
    Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 1994; 76: 2443–51.PubMedGoogle Scholar
  31. 31.
    Russell JA. Gastric tonometry: does it work? Intensive Care Med 1997; 23: 3–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Takala J. Determinants of splanchnic blood flow. Br J Anaesth 1996; 77: 50–8.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2001

Authors and Affiliations

  • Marja-Tellervo Mäkinen
    • 3
  • Pertti O. Heinonen
    • 3
  • Ulla-Maija Klemola
    • 1
  • Arvi Yli-Hankala
    • 2
  1. 1.Eye-Ear HospitalUniversity of HelsinkiHelsinkiFinland
  2. 2.Women’s HospitalUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Anaesthesia and Intensive Care MedicineUniversity of Helsinki, Meilahti HospitalHUCHFinland

Personalised recommendations