Canadian Journal of Anesthesia

, Volume 50, Issue 8, pp 779–794 | Cite as

Neuromuscular blockade at the larynx, the diaphragm and the corrugator supercilii muscle: a review

General Anesthesia

Abstract

Purpose

To review recent findings concerning neuromuscular blockade and monitoring at the larynx, the diaphragm, and the corrugator supercilii muscle.

Source

This narrative review is based on recent publications.

Principal findings

Neuromuscular blockade at the larynx and the diaphragm is less intense than at the adductor pollicis muscle; the onset and offset of neuromuscular blockade is more rapid. The corrugator supercilii muscle reflects better the time course of neuromuscular blockade of the larynx than the adductor pollicis muscle, is better suited to monitor the onset of neuromuscular blockade for intubation, and should give a better reflection of the time course and degree of neuromuscular blockade of the larynx or the diaphragm. Recovery of neuromuscular function at the end of any procedure is best reflected at the adductor pollicis muscle where neuromuscular transmission is last restored. Clinical monitoring of the larynx or the diaphragm is still limited by the absence of a simple method. Acceleromyography of the corrugator supercilii muscle is prone to artifacts that do not occur during monitoring of the adductor pollicis muscle. Phonomyography, a new method of monitoring that is currently being tested, is based on the phenomenon that muscle contraction creates low-frequency sound waves, which can be detected using special microphones to quantify neuromuscular blockade. This method seems promising because it can be easily used on all muscles of interest.

Conclusion

Research during the last 15 years has greatly enhanced our knowledge about how muscles react differently to muscle relaxants and has enabled us to achieve better surgical conditions with safer use of muscle relaxants. Interesting technologies have been developed to reliably monitor neuromuscular blockade at the larynx and the diaphragm, but are currently restricted to research settings. Our increased understanding should help us in ongoing efforts to develop the “ideal” muscle relaxant and the “ideal” method of neuromuscular monitoring.

Blocage neuromusculaire du larynx, du diaphragme et du muscle sourcilier : une revue

Résumé

Objectif

Passer en revue les derniers résultats de recherches sur le blocage neuromusculaire et le monitorage du larynx, du diaphragme et du muscle sourcilier.

Source

Cette revue traditionnelle porte sur des publications récentes.

Constatations principales

Le blocage neuromusculaire du larynx et du diaphragme est moins intense que celui de l’adducteur du pouce; le délai d’installation et le renversement du bloc sont plus rapides. Le muscle sourcilier montre mieux l’évolution du blocage neuromusculaire du larynx que le muscle adducteur du pouce, convient mieux au monitorage du début du blocage neuromusculaire pour l’intubation et devrait donner une meilleure idée de l’évolution et du degré de blocage neuromusculaire du larynx ou du diaphragme. La récupération de la fonction neuromusculaire postopératoire est mieux démontrée au muscle adducteur du pouce où la transmission neuromusculaire est restaurée en dernier. Le monitorage clinique du larynx ou du diaphragme demeure limité par l’absence d’une méthode simple. L’accéléromyographie du muscle sourcilier expose à des artéfacts qui ne surviennent pas pendant le monitorage de l’adducteur du pouce. La phonomyographie, une nouvelle méthode de monitorage présentement expérimentée, se fonde sur le fait que la contraction du muscle crée des ondes sonores de basses fréquences qui peuvent être détectées avec l’usage de microphones spéciaux pour quantifier le blocage neuromusculaire. Cette méthode semble prometteuse, car elle est facilement utilisable pour tous les muscles qui nous intéressent.

Conclusion

La recherche des 15 dernières années a beaucoup apporté à notre compréhension sur la réaction différente des muscles aux myorelaxants et nous a permis d’offrir de meilleures conditions chirurgicales en utilisant les myorelaxants de façon plus sécuritaire. D’intéressantes technologies ont été mises au point pour le monitorage fiable du blocage neuromusculaire du larynx et du diaphragme, mais elles sont actuellement réservées à la recherche. Les nouvelles découvertes vont contribuer aux efforts permanents visant à élaborer le myorelaxant “idéal” et la méthode de monitorage “idéale”.

References

  1. 1.
    Platzer W. Pernkopf Anatomy: Atlas of Topographic and Applied Human Anatomy, 3rd ed., Baltimore: Urban & Schwarzenberg; 1989: 383.Google Scholar
  2. 2.
    Rossi G, Cortesina G. Multi-motor end-plate muscle fibres in the human vocalis muscle. Nature 1965; 206: 629–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Morales J, Rama J, Gayoso M. Some aspects of the nerve endings and synapses in the vocalis muscle. J Laryngol Otol 1980; 94: 1047–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Sahgal V, Hast MH. Histochemistry of primate laryngeal muscles. Acta Otolaryngol 1974; 78: 277–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Andel H, Klune G, Andel D, et al. Propofol without muscle relaxants for conventional or fiberoptic nasotracheal intubation: a dose-finding study. Anesth Analg 2000; 91: 458–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Hovorka J, Honkavaara P, Korttila K. Tracheal intubation after induction of anaesthesia with thiopentone or propofol without muscle relaxants. Acta Anaesthesiol Scand 1991; 35: 326–8.PubMedGoogle Scholar
  7. 7.
    Schlaich N, Mertzlufft F, Soltesz S, Fuchs-Buder T. Remifentanil and propofol without muscle relaxants or with different doses of rocuronium for tracheal intubation in outpatient anaesthesia. Acta Anaesthesiol Scand 2000; 44: 720–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuchs-Buder T. Intubation without muscle relaxants: options and limitations (German). Anasthesiol Intensivmed Notfallmed Schmerzther 2000; 35: 106–8.PubMedGoogle Scholar
  9. 9.
    Haeseler G, Stormer M, Mohammadi B, et al. The anesthetic propofol modulates gating in paramyotonia congenita mutant muscle sodium channels. Muscle Nerve 2001; 24: 736–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Hemmerling TM, Schurr C, Dern S, Schmidt J, Braun GG, Klein P. Intraoperative electromyographic recurrent laryngeal nerve identification as a routine measure (German). Chirurg 2000; 71: 545–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Donati F, Plaud B, Meistelman C. A method to measure elicited contraction of laryngeal adductor muscles during anesthesia. Anesthesiology 1991; 74: 827–32.PubMedGoogle Scholar
  12. 12.
    Girling KJ, Bedforth NM, Spendlove JL, Mahajan RP. Assessing neuromuscular block at the larynx: the effect of change in resting cuff pressure and a comparison with video imaging in anesthetized humans. Anesth Analg 1999; 88: 426–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Dhonneur G, Kirov K, Slavov V, Duvaldestin P. Effects of an intubating dose of succinylcholine and rocuronium on the larynx and diaphragm: an electromyographic study in humans. Anesthesiology 1999; 90: 951–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Hemmerling TM, Schurr C, Walter S, Dern S, Schmidt J, Braun GG. A new method of monitoring the effect of muscle relaxants on laryngeal muscles using surface laryngeal electromyography. Anesth Analg 2000; 90: 494–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Hemmerling TM, Schmidt J, Wolf T, Wolf SR, Jacobi KE. Surface vs intramuscular laryngeal electromyography. Can J Anesth 2000; 47: 860–5.PubMedGoogle Scholar
  16. 16.
    Meistelman C, Plaud B, Donati F. Neuromuscular effects of succinylcholine on the vocal cords and adductor pollicis muscles. Anesth Analg 1991; 73: 278–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Wright PM, Caldwell JE, Miller RD. Onset and duration of rocuronium and succinylcholine at the adductor pollicis and laryngeal adductor muscles in anesthetized humans. Anesthesiology 1994; 81: 1110–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Hemmerling TM, Schmidt J, Wolf T, Klein P, Jacobi K. Comparison of succinylcholine with two doses of rocuronium using a new method of monitoring neuromuscular block at the laryngeal muscles by surface laryngeal electromyography. Br J Anaesth 2000; 85: 251–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Meistelman C, Plaud B, Donati F. Rocuronium (ORG 9426) neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis in humans. Can J Anaesth 1992; 39: 665–9.PubMedGoogle Scholar
  20. 20.
    Plaud B, Debaene B, Lequeau F, Meistelman C, Donati F. Mivacurium neuromuscular block at the adductor muscles of the larynx and adductor pollicis in humans. Anesthesiology 1996; 85: 77–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Hemmerling TM, Schmidt J, Hanusa C, Wolf T, Schmitt H. Simultaneous determination of neuromuscular block at the larynx, diaphragm, adductor pollicis, orbicularis oculi and corrugator supercilii muscles. Br J Anaesth 2000; 85: 856–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Donati F, Meistelman C, Plaud B. Vecuronium neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis. Anesthesiology 1991; 74: 833–7.PubMedGoogle Scholar
  23. 23.
    Kim KS, Chung CW, Shin WJ. Cisatracurium neuromuscular block at the adductor pollicis and the laryngeal adductor muscles in humans. Br J Anaesth 1999; 83: 483–4.PubMedGoogle Scholar
  24. 24.
    Debaene B, Lieutaud T, Billard V, Meistelman C. ORG 9487 neuromuscular block at the adductor pollicis and the laryngeal adductor muscles in humans. Anesthesiology 1997; 86: 1300–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Sterz R, Pagala M, Peper K. Postjunctional characteristics of the endplates in mammalian fast and slow muscles. Pflugers Arch 1983; 398: 48–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Ibebunjo C, Srikant CB, Donati F. Morphological correlates of the differential responses of muscles to vecuronium. Br J Anaesth 1999; 83: 284–91.PubMedGoogle Scholar
  27. 27.
    Donati F. Onset of action of relaxants. Can J Anaesth 1988; 35: S52–8.PubMedGoogle Scholar
  28. 28.
    Michalek-Sauberer A, Gilly H, Steinbereithner K, Vizi ES. Effects of vecuronium and rocuronium in antagonistic laryngeal muscles and the anterior tibial muscle in the cat. Acta Anaesthesiol Scand 2000; 44: 503–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Iwasaki H, Igarashi M, Namiki A, Omote K Differential neuromuscular effects of vecuronium on the adductor and abductor laryngeal muscles and tibialis anterior muscle in dogs. Br J Anaesth 1994; 72: 321–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Iwasaki H, Igarashi M, Omote K, Namiki A. Vecuronium neuromuscular blockade at the cricothyroid and posterior cricoarytenoid muscles of the larynx and at the adductor pollicis muscle in humans. J Clin Anesth 1994; 6: 14–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Bellemare F, Bigland-Ritchie B. Assessment of human diaphragm strength and activation using phrenic nerve stimulation. Respir Physiol 1984; 58: 263–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Similowski T, Fleury B, Launois S, Cathala HP, Bouche P, Derenne JP. Cervical magnetic stimulation: a new painless method for bilateral phrenic nerve stimulation in conscious humans. J Appl Physiol 1989; 67: 1311–8.PubMedGoogle Scholar
  33. 33.
    Similowski T, Fleury B, Launois S, Cathala HP, Bouche P, Derenne JP. Cervical magnetic stimulation. A new method of bilateral phrenic nerve stimulation for use in clinical practice (French). Rev Mal Respir 1988; 5: 609–14.PubMedGoogle Scholar
  34. 34.
    Mouchawar G, Bourland JD, Voorhees WD, Geddes LA. Stimulation of inspiratory motor nerves with a pulsed magnetic field (Letter). Med Biol Eng Comput 1990; 28: 613.PubMedCrossRefGoogle Scholar
  35. 35.
    Mouchawar GA, Bourland JD, Geddes LA, Nyenhuis JA. Magnetic electrophrenic nerve stimulation to produce inspiration. Ann Biomed Eng 1991; 19: 219–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Geddes LA. History of magnetic stimulation of the nervous system. J Clin Neurophysiol 1991; 8: 3–9.PubMedGoogle Scholar
  37. 37.
    Wragg S, Aquilina R, Moran J, et al. Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects. Eur Respir J 1994; 7: 1788–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Mador MJ, Rodis A, Magalang UJ, Ameen K. Comparison of cervical magnetic and transcutaneous phrenic nerve stimulation before and after threshold loading. Am J Respir Crit Care Med 1996; 154: 448–53.PubMedGoogle Scholar
  39. 39.
    Similowski T, Mehiri S, Duguet A, Attali V, Straus C, Derenne JP. Comparison of magnetic and electrical phrenic nerve stimulation in assessment of phrenic nerve conduction time. J Appl Physiol 1997; 82: 1190–9.PubMedGoogle Scholar
  40. 40.
    Verin E, Straus C, Demoule A, Mialon P, Derenne JP, Similowski T. Validation of improved recording site to measure phrenic conduction from surface electrodes in humans. J Appl Physiol 2002; 92: 967–74.PubMedGoogle Scholar
  41. 41.
    Donati F, Antzaka C, Bevan DR. Potency of pancuronium at the diaphragm and the adductor pollicis muscle in humans. Anesthesiology 1986; 65: 1–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Donati F, Meistelman C, Plaud B. Vecuronium neuromuscular blockade at the diaphragm, the orbicularis oculi, and adductor pollicis muscles. Anesthesiology 1990; 73: 870–5.PubMedGoogle Scholar
  43. 43.
    Dhonneur G, Rebaine C, Slavov V, Ruggier R, De CV, Duvaldestin P. Neostigmine reversal of vecuronium neuromuscular block and the influence of renal failure. Anesth Analg 1996; 82: 134–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Hemmerling TM, Schmidt J, Wolf T, Hanusa C, Siebzehnruebl E, Schmitt H. Intramuscular versus surface electromyography of the diaphragm for determining neuromuscular blockade. Anesth Analg 2001; 92: 106–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Chauvin M, Lebrault C, Duvaldestin P. The neuromuscular blocking effect of vecuronium on the human diaphragm. Anesth Analg 1987; 66: 117–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Derrington MC, Hindocha N. Measurement of evoked diaphragm twitch strength during anaesthesia. Adaptation and evaluation of an existing technique. Br J Anaesth 1988; 61: 270–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Derrington MC, Hindocha N. Comparison of neuromuscular blockade in the diaphragm and the hand. Br J Anaesth 1988; 61: 279–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Lebrault C, Chauvin M, Guirimand F, Duvaldestin P. Relative potency of vecuronium on the diaphragm and the adductor pollicis. Br J Anaesth 1989; 63: 389–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Cantineau JP, Porte F, d’Honneur G, Duvaldestin P. Neuromuscular effects of rocuronium on the diaphragm and adductor pollicis muscles in anesthetized patients. Anesthesiology 1994; 81: 585–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Wymore ML, Eisele JH. Differential effects of d-tubocurarine on inspiratory muscles and two peripheral muscle groups in anesthetized man. Anesthesiology 1978; 48: 360–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Pansard JL, Chauvin M, Lebrault C, Gauneau P, Duvaldestin P. Effect of an intubating dose of succinylcholine and atracurium on the diaphragm and the adductor pollicis muscle in humans. Anesthesiology 1987; 67: 326–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Laycock JR, Donati F, Smith CE, Bevan DR. Potency of atracurium and vecuronium at the diaphragm and the adductor pollicis muscle. Br J Anaesth 1988; 61: 286–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Lebrault C, Chauvin M, Brusset A, Duvaldestin P. Comparison of the antagonistic effects of neostigmine and edrophonium on neuromuscular block induced by vecuronium in the diaphragm and thumb adductor (French). Ann Fr Anesth Reanim 1989; 8(Suppl): R128.PubMedGoogle Scholar
  54. 54.
    Waud BE, Waud DR. The relation between the response to “train-of-four” stimulation and receptor occlusion during competitive neuromuscular block. Anesthesiology 1972; 37: 413–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Lu TC. Affinity of curare-like compounds and their potency in blocking neuromuscular transmission. J Pharmacol Exp Ther 1970; 174: 560–6.PubMedGoogle Scholar
  56. 56.
    Goat VA, Yeung ML, Blakeney C, Feldman SA. The effect of blood flow upon the activity of gallamine triethiodide. Br J Anaesth 1976; 48: 69–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Robertson CH Jr, Pagel MA, Johnson RL Jr. The distribution of blood flow, oxygen consumption, and work output among the respiratory muscles during unobstructed hyperventilation. J Clin Invest 1977; 59: 43–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Abdulatif M, el Sanabary M. Blood flow and mivacurium-induced neuromuscular block at the orbicularis oculi and adductor pollicis muscles. Br J Anaesth 1997; 79: 24–8.PubMedGoogle Scholar
  59. 59.
    Isono S, Ide T, Kochi T, Mizuguchi T, Nishino T. Effects of partial paralysis on the swallowing reflex in conscious humans. Anesthesiology 1991; 75: 980–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Pavlin EG, Holle RH, Schoene RB. Recovery of airway protection compared with ventilation in humans after paralysis with curare. Anesthesiology 1989; 70: 381–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Beemer GH, Rozental P. Postoperative neuromuscular function. Anaesth Intensive Care 1986; 14: 41–5.PubMedGoogle Scholar
  62. 62.
    Bevan DR, Smith CE, Donati F. Postoperative neuromuscular blockade: a comparison between atracurium, vecuronium, and pancuronium. Anesthesiology 1988; 69: 272–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Katz RL. Neuromuscular effects of d-tubocurarine, edrophonium and neostigmine in man. Anesthesiology 1967; 28: 327–36.PubMedCrossRefGoogle Scholar
  64. 64.
    Werba A, Klezl M, Schramm W, et al. The level of neuromuscular block needed to suppress diaphragmatic movement during tracheal suction in patients with raised intracranial pressure: a study with vecuronium and atracurium. Anaesthesia 1993; 48: 301–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Laake JH, Rottingen JA. Rocuronium and anaphylaxis-a statistical challenge. Acta Anaesthesiol Scand 2001; 45: 1196–203.PubMedCrossRefGoogle Scholar
  66. 66.
    Laxenaire MC. Epidemiology of anesthetic anaphylactoid reactions. Fourth multicenter survey (July 1994–December 1996) (French). Ann Fr Anesth Reanim 1999; 18: 796–809.PubMedGoogle Scholar
  67. 67.
    Bevan DR, Kahwaji R, Ansermino JM, et al. Residual block after mivacurium with or without edrophonium reversal in adults and children. Anesthesiology 1996; 84: 362–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Eger EI, White PF, Bogetz MS. Clinical and economic factors important to anaesthetic choice for day-case surgery. Pharmacoeconomics 2000; 17: 245–62.PubMedCrossRefGoogle Scholar
  69. 69.
    King M, Sujirattanawimol N, Danielson DR, Hall BA, Schroeder DR, Warner DO. Requirements for muscle relaxants during radical retropubic prostatectomy. Anesthesiology 2000; 93: 1392–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Chassard D, Berrada K, Tournadre J, Bouletreau P. The effects of neuromuscular block on peak airway pressure and abdominal elastance during pneumoperitoneum. Anesth Analg 1996; 82: 525–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Goodmurphy CW, Ovalle WK. Morphological study of two human facial muscles: orbicularis oculi and corrugator supercilii. Clin Anat 1999; 12: 1–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Le Corre F, Plaud B, Benhamou E, Debaene B. Visual estimation of onset time at the orbicularis oculi after five muscle relaxants: application to clinical monitoring of tracheal intubation. Anesth Analg 1999; 89: 1305–10.PubMedGoogle Scholar
  73. 73.
    Plaud B, Laffon M, Ecoffey C, Meistelman C. Monitoring orbicularis oculi predicts good intubating conditions after vecuronium in children. Can J Anaesth 1997; 44: 712–6.PubMedGoogle Scholar
  74. 74.
    Sayson SC, Mongan PD. Onset of action of mivacurium chloride. A comparison of neuromuscular blockade monitoring at the adductor pollicis and the orbicularis oculi. Anesthesiology 1994; 81: 35–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Ungureanu D, Meistelman C, Frossard J, Donati F. The orbicularis oculi and the adductor pollicis muscles as monitors of atracurium block of laryngeal muscles. Anesth Analg 1993; 77: 775–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Rimaniol JM, Dhonneur G, Sperry L, Duvaldestin P. A comparison of the neuromuscular blocking effects of atracurium, mivacurium, and vecuronium on the adductor pollicis and the orbicularis oculi muscle in humans. Anesth Analg 1996; 83: 808–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Plaud B, Debaene B, Donati F. The corrugator supercilii, not the orbicularis oculi, reflects rocuronium neuromuscular blockade at the laryngeal adductor muscles. Anesthesiology 2001; 95: 96–101.PubMedCrossRefGoogle Scholar
  78. 78.
    Hemmerling TM, Donati F, Beaulieu P, Babin D. Phonomyography of the corrugator supercilii muscle: signal characteristics, best recording site and comparison with acceleromyography. Br J Anaesth 2002; 88: 389–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Caffrey RR, Warren ML, Becker KE Jr. Neuromuscular blockade monitoring comparing the orbicularis oculi and adductor pollicis muscles. Anesthesiology 1986; 65: 95–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Debaene B, Beaussier M, Meistelman C, Donati F, Lienhart A. Monitoring the onset of neuromuscular block at the orbicularis oculi can predict good intubating conditions during atracurium-induced neuromuscular block. Anesth Analg 1995; 80: 360–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Smith I, Saad RS. Comparison of intubating conditions after rocuronium or vecuronium when the timing of intubation is judged by clinical criteria. Br J Anaesth 1998; 80: 235–7.PubMedGoogle Scholar
  82. 82.
    Koscielniak-Nielsen ZJ, Horn A, Sztuk F, Eriksen K, Skovgaard LT, Viby-Mogensen J. Timing of tracheal intubation: monitoring the orbicularis oculi, the adductor pollicis or use a stopwatch? Eur J Anaesthesiol 1996; 13: 130–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Hemmerling TM, Schmidt J, Bosert C, Jacobi KE, Klein P. Intraoperative monitoring of the recurrent laryngeal nerve in 151 consecutive patients undergoing thyroid surgery. Anesth Analg 2001; 93: 396–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Hemmerling TM, Schmidt J, Hanusa C, Wolf T, Jacobi KE. The lumbar paravertebral region provides a novel site to assess neuromuscular block at the diaphragm. Can J Anesth 2001; 48: 356–60.PubMedGoogle Scholar
  85. 85.
    Dahaba AA, von Klobucar F, Rehak PH, List WF. The neuromuscular transmission module versus the relaxometer mechanomyograph for neuromuscular block monitoring. Anesth Analg 2002; 94: 591–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997; 41: 1095–103.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2003

Authors and Affiliations

  1. 1.Department of AnesthesiologyHôtel-Dieu, Centre Hospitalier de l’Université de Montréal, Université de Montréal, MontréalCanada

Personalised recommendations