Canadian Journal of Anesthesia

, Volume 51, Issue 3, pp 258–263 | Cite as

Preconditioning with prolonged oxygen exposure induces ischemic tolerance in the brain via oxygen free radical formation

  • Xijing Zhang
  • Lize Xiong
  • Wenneng Hu
  • Yu Zheng
  • Zhenghua Zhu
  • Yanhong Liu
  • Shaoyang Chen
  • Xi Wang
Neuroanesthesia and Intensive Care



To determine if 100% oxygen (O2) inhalation induces ischemic tolerance to focal cerebral ischemia and if the effect is induced via O2 free radical formation.


Experiment 1: 36 rats were randomly assigned to four groups (n = 9 each): Group A, control rats inhaled air for 24 hr; Groups B, C and D animals inhaled 100% O2 for six hours, 12 hr and 24 hr respectively. Experiment 2: 32 rats were randomly assigned to four groups (n = 8 each): Groups E and F rats received normal saline (5 mL·kg−1 intraperitoneally) and then inhaled air (Group E) or 100% O2 (Group F) for 24 hr; Groups G and H animals received 10% dimethylthiourea (500 mg·kg−1 intraperitoneally) and then inhaled 100% O2 (Group G) or air (Group H) for 24 hr. Twenty-four hours after the treatments, the right middle cerebral artery was occluded in all rats for 120 min. The neurologic deficit scores (NDS) and brain infarct volumes were evaluated at 24 hr after reperfusion.


Experiment 1: the infarct volume and NDS of Group D were smaller than in controls (P = 0.004 and 0.042 respectively). The infarct volume was reduced by 47% in Group D. There was no statistical difference among Groups A, B and C. Experiment 2: the infarct volume and NDS in Group F were less than in controls (Group E;P = 0.001 and 0.036 respectively). The infarct volume was reduced by 60% in Group F There was no difference among Groups E, G and H.


Our study demonstrates that preconditioning with 100% O2 for 24 hr can induce ischemic tolerance via formation of O2 free radicals in transient focal cerebral ischemia in rats.


Infarct Volume Ischemic Precondition Focal Cerebral Ischemia Cereb Blood Flow Spinal Cord Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Le préconditionnement relevant d’une exposition prolongée à l’oxygène induit une tolérance ischémique dans le cerveau par la formation de radicaux libres d’oxygène



Déterminer si l’inhalation d’oxygène à 100 % (O2) induit une tolérance ischémique à une ischemic cérébrale focale et si l’effet est causé par la formation de radicaux libres d’O2.


Essai 1: 36 rats ont été répartis au hasard en quatre groupes (n = 9 chacun): Groupe A, les rats témoins ont inhalé de l’air pendant 24 h; Groupes B, C et D, les animaux ont inhaié de l’O2 à 100 % pendant six heures, 12h et 24 h, respectivement. Essai 2: 32 rats répartis au hasard en quatre groupes (n = 8 chacun): Groupes E et F, les rats ont reçu une solution saline (une dose intrapéritonéale de 5 mL·kg−1) et ont ensuite inhalé de l’air (Groupe E) ou de l’O2 à 100% (Groupe F) pendant 24 h; Groupes G et H, les animaux ont reçu du diméthyithiourée à 10 % (dose intrapéritonéale de 500 mg·kg−1) et ont ensuite inhalé de l’O2 à 100 % (Groupe G) ou de l’air (Groupe H) pendant 24 h. Vingt-quatre heures après ie traitement, nous avons procédé à l’occlusion de l’artère cérébrale moyenne droite chez tous les rats pendant 120 min. Les scores de déficit neurologique (SDN) et ies volumes de l’infarctus cérébral ont été évalués 24 h après la reperfusion.


Essai 1: te volume de l’infarctus et le SDN du Groupe D ont été plus faibles que ceux du Groupe témoin (P = 0,004 et 0,042 respectivement). Le volume de l’infarctus a été réduit de 41 % dans le Groupe D. Il n’y avait pas de différence statistique entre les Groupes A, B et C. Essai 2: le volume de l’infarctus et le SDN du Groupe F ont été plus faibles que ceux du Groupe témoin (Groupe E; P = 0,001 et 0,036 respectivement). Le volume de l’infarctus a été réduit de 60 % dans le Groupe F. Les Groupes E, G et H étaient comparables.


Le préconditionnement avec de l’O2 à 100% pendant 24 h peut induire une tolérance ischémique par la formation de radicaux libres d’O2 pendant une ischémie cérébrale focale chez les rats.


  1. 1.
    Dawson TD. Preconditioning-mediated neutoprotection through erythropoietin? Lancet 2002; 359: 96–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM. Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 1996; 16: 1137–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Tasaki K, Ruetzler CA, Ohstuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pretreatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res 1997; 748: 267–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM. TNF-alpha pretreatment induces protective effects against forçai cerebral ischemia in mice. J Cereb Blood Flow Metab 1997; 17: 483–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Yanamoto H, Hashimoto N, Nagato I, Kikuchi H. Infarct tolerance against temporary focal ischemia following spreading depression in rat brain. Brain Res 1998; 784: 239–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Bernaudin M, Marti HH, Roussel S, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 1999; 19: 643–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Wiegand F, Liao W, Busch C, et al. Respiratory chain inhibition induces tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 1999; 19: 1229–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Weih M, Bergk A, Isaev NK, et al. Induction of ischemic tolerance in rat cortical neurons by 3-nitropropionic acid: chemical preconditioning. Neurosci Lett 1999; 272: 207–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Wada K, Ito M, Miyazawa T, et al. Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res 1996; 740: 15–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J 2000; 113: 836–9.PubMedGoogle Scholar
  11. 11.
    Wada K, Miyazama T, Nomura N, Tsuzuki N, Nawashiro H, Shima K. Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus. Neurosurgery 2001; 49: 160–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T. Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology 2002; 96: 907–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Trass K, Wiegand F, Schumann P, et al. Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res 2000; 871: 146–50.CrossRefGoogle Scholar
  14. 14.
    Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-κB. J Neurochem 2001; 78: 909–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Das DK, Maulik N, Sato M, Kay PS. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 1999; 196: 59–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Rauca C, Zerbe R, Jantze H, Krug M. The important of free hydroxyl radicals to hypoxia preconditioning. Brain Res 2000; 868: 147–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84–91.PubMedGoogle Scholar
  18. 18.
    Chen MF, Chen HM, Ueng SW, Shyr MH. Hyperbaric oxygen pretreatment attenuates hepatic reperfusion injury. Liver 1998; 18: 110–6.PubMedGoogle Scholar
  19. 19.
    Blondeau N, Widmann C, Lazdunski M, Heurteaux C. Activation of the nuclear factor-κB is a key event in brain tolerance. J Neurosci 2001; 21: 4668–77.PubMedGoogle Scholar
  20. 20.
    Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 2001; 88: 802–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Mickel HS, Vaishnav YN, Kempski O, von Lubitz D, Weiss JF, Feuerstein G. Breathing 100% oxygen after global brain ischemia in Mongolian gerbils results in increased lipid peroxidation and increased mortality. Stroke 1987; 18: 426–30.PubMedGoogle Scholar
  22. 22.
    Fox RB. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea. J Clin Invest 1984; 74: 1456–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Kinugawa S, Tsutsui H, Hayashidani S, et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice. Role of oxidative stress. Circ Res 2000; 87: 392–8.PubMedGoogle Scholar
  24. 24.
    Pattanaik U, Prasad K. Reactive oxygen species and endotoxic shock: effect of dimethylthiourea. J Cardiovasc Pharmacol Ther 2001; 6: 273–85.PubMedCrossRefGoogle Scholar
  25. 25.
    Drummond JC, Piyash PM, Kimbro JR. Neuroprotection failure in stroke (Letter). Lancet 2000; 356: 1032–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Drummond JC. Brain protection during anesthesia. A reader’s guide. Anesthesiology 1993; 79: 877–80.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2004

Authors and Affiliations

  • Xijing Zhang
    • 1
  • Lize Xiong
    • 1
  • Wenneng Hu
    • 1
  • Yu Zheng
    • 1
  • Zhenghua Zhu
    • 1
  • Yanhong Liu
    • 1
  • Shaoyang Chen
    • 1
  • Xi Wang
    • 2
  1. 1.Department of AnesthesiologyXijing HospitalXi’anChina
  2. 2.Institute of NeuroscienceFourth Military Medical UniversityXi’anChina

Personalised recommendations