Canadian Journal of Anesthesia

, Volume 52, Issue 1, pp 38–44 | Cite as

Xenon does not reduce opioid requirement for orthopedic surgery

  • Martin LuginbühlEmail author
  • Steen Petersen-Felix
  • Alex M. Zbinden
  • Thomas W. Schnider
General Anesthesia



Is to test the hypothesis that 70% xenon has a relevant opioid sparing effect compared to a minimum alveolar concentration (MAC)-equivalent combination of N2O and desflurane.


In this randomized, controlled study of 30 patients undergoing major orthopedic surgery we determined the plasma alfentanil concentration required to suppress response to skin incision in 50% of patients (Cp50) anesthetized with xenon (70%) or a combination of N2O (70%) and desflurane (2%). A response was defined as movement, pressor response > 15 mmHg, heart rate > 90 beats · min−1, autonomic reactions or a combination of these. At skin incision, alfentanil was administered at a randomly selected target plasma concentration thereafter the concentration was increased or decreased according to the patient’s response. After skin incision, desflurane was adjusted to maintain the bispectral index below 60 and prevent responsiveness in both groups.


The Cp50 (± standard error) of alfentanil was 83 ± 48 ng · mL−1 with xenon and 49 ± 26 ng · mL−1 with N2O/desflurane (P = 0.451). During surgery five xenon and 15 N2O/desflurane patients were given desflurane at 1.0 ± 0.5 volume % and 2.5 ± 0.7 volume %. The total age adjusted MAC was 0.97 ± 0.07 and 0.94 ± 0.07 respectively (P = 0.217). The intraoperative plasma alfentanil concentrations were 95 ± 80 and 93 ± 60 ng · mL−1 respectively (mean ± SD;P = 0.451). Patients given xenon were slightly more bradycardic, whereas blood pressure was similar.


Xenon compared to a MAC-equivalent combination of N2O and desflurane does not substantially reduce opioid requirement for orthopedic surgery. A small but clinically irrelevant difference cannot be excluded, however.


Xenon Alfentanil Desflurane Bispectral Index Opioid Spare Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Le xénon ne réduit pas les besoins d’opioïdes en chirurgie orthopédique



Vérifier l’hypothèse voulant que le xénon à 70 % permette de réduire significativement les opioïdes en comparaison d’une combinaison équivalente de concentration alvéolaire minimale (CAM) de N2O et de desflurane.


L’étude randomisée et contrôlée comptait 30 patients devant subir une intervention orthopédique majeure. La concentration plasmatique d’alfentanil nécessaire pour supprimer la réaction à une incision cutanée chez 50 % des patients (Cp50) sous anesthésie au xénon (70 %) ou une combinaison de N2O (70%) et de desflurane (2%) a été déterminée. Une réaction était un mouvement, une réponse vasopressive > 15 mmHg, une fréquence cardiaque > 90 battements · min−1, des réactions autonomes ou une des réactions combinées. Lors de l’incision cutanée, l’alfentanil était administré selon une concentration plasmatique cible choisie aléatoirement, et la concentration augmentée ou diminuée selon la réaction du patient. Après l’incision, le desflurane était ajusté pour maintenir l’index bispectral en bas de 60 et éliminer les réactions chez tous les patients.


La Cp50 (± erreur type) de l’alfentanil a été de 83 ± 48 ng · mL−1 avec le xénon et de 49 ± 26 ng · mL−1 avec N2O/desflurane (P = 0,451). Pendant l’opération, cinq patients sous xénon et 15 sous N2O/desflurane ont reçu du desflurane à 1,0 ± 0,5 volume % et 2,5 ±0,7 volume %. L’ajustement total de la CAM en fonction de l’âge a été de 0,97 ± 0,07 et de 0,94 ± 0,07 respectivement (P = 0,217). les concentrations plasmatiques d’alfentanil ont été de 95 ± 80 et de 93 ± 60 ng · mL−1 respectivement (moyenne ± écart type; P = 0,451). Les patients qui ont reçu du xénon ont présenté un peu plus de bradycardie, mais la tension artérielle était similaire entre les groupes.


Le xénon, comparé à une CAM d’une combinaison équivalente de N2O et de desflurane, ne réduit pas significativement les besoins d’opioïdes en orthopédie. On ne peut toutefois exclure une petite différence, mais cliniquement non significative.


  1. 1.
    Lachmann B, Armbruster S, Schairer W, et al. Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet 1990; 335: 1413–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Goto T, Saito H, Shinkai M, Nakata Y, Ichinose F, Morita S. Xenon provides faster emergence from anesthesia than does nitrous oxide-sevoflurane or nitrous oxide-isoflurane. Anesthesiology 1997; 86: 1273–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Hettrick DA, Pagel PS, Kersten JR, et al. Cardiovascular effects of xenon in isoflurane-anesthetized dogs with dilated cardiomyopathy. Anesthesiology 1998; 89: 1166–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Luttropp HH, Romner B, Perhag L, Eskilsson J, Fredriksen S, Werner O. Left ventricular performance and cerebral haemodynamics during xenon anaesthesia. A transoesophageal echocardiography and transcranial Doppler sonography study. Anaesthesia 1993; 48: 1045–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Lane GA, Nahrwold ML, Tait AR, Taylor-Busch M, Cohen PJ, Beaudoin AR. Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not. Science 1980; 210: 899–901.PubMedCrossRefGoogle Scholar
  6. 6.
    Rossaint R, Reyle-Hahn M, Schulte Am Esch J, et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 2003; 98: 6–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Goto T, Nakata Y, Lshiguro Y, Niimi Y, Suwa K, Morita S. Minimum alveolar concentration-awake of xenon alone and in combination with isoflurane or sevoflurane. Anesthesiology 2000; 93: 1188–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Russsell IF. Comparison of wakefulness with two anaesthetic regimens. Total i.v. v. balanced anaesthesia. Br J Anaesth 1986; 58: 965–8.CrossRefGoogle Scholar
  9. 9.
    Rampil IJ, Lockhart SH, Zwass MS, et al. Clinical characteristics of desflurane in surgical patients: minimum alveolar concentration. Anesthesiology 1991; 74: 429–33.PubMedGoogle Scholar
  10. 10.
    Nickalls RW, Mapleson WW. Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth 2003; 91: 170–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Pocock SJ. Methods of randomization.In: Pocock SJ (Ed.). Clinical Trials. A Practical Approach. Chichester: John Wiley & Sons; 1984: 80–7.Google Scholar
  12. 12.
    Lemmens HJ, Bovill JG, Hennis PJ, Gladines MP, Burm AG. Alcohol consumption alters the pharmacodynamics of alfentanil. Anesthesiology 1989; 71: 669–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Raemer DB, Buschman A, Varvel JR, et al. The prospective use of population pharmacokinetics in a computer-driven infusion system for alfentanil. Anesthesiology 1990; 73: 66–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Iselin-Chaves IA, Flaishon R, Sebel PS, et al. The effect of the interaction of propofol and alfentanil on recall, loss of consciousness, and the bispectral index. Anesth Analg 1998; 87: 949–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Ausems ME, Hug CC Jr, Stanski DR, Burm AG. Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology 1986; 65: 362–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Luginbuhl M, Lauber R, Feigenwinter P, Zbinden AM. Monitoring xenon in the breathing circuit with a thermal conductivity sensor. Comparison with a mass spectrometer and implications on monitoring other gases. J Clin Monit Comput 2002; 17: 23–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Kingsbury DP, Makowski GS, Stone JA. Quantitative analysis of fentanyl in pharmaceutical preparations by gas chromatography-mass spectrometry. J Anal Toxicol 1995; 19: 27–30.PubMedGoogle Scholar
  18. 18.
    Gan TJ, Glass PS, Windsor A, et al. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. BIS Utility Study Group. Anesthesiology 1997; 87: 808–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Lavigne M, Parvizi J, Beck M, Siebenrock KA, Ganz R, Leunig M. Anterior femoroacetabular impingement. Part I. Techniques of joint preserving surgery. Clin Orthop 2004; 61–6.Google Scholar
  20. 20.
    Luginbuhl M, Schnider TW. Detection of awareness with the bispectral index: two case reports. Anesthesiology 2002; 96: 241–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78: 707–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Doi M, Gajraj RJ, Mantzaridis H, Kenny GN. Prediction of movement at laryngeal mask airway insertion: comparison of auditory evoked potential index, bispectral index, spectral edge frequency and median frequency. Br J Anaesth 1999; 82: 203–7.PubMedGoogle Scholar
  23. 23.
    Rampil IJ, Kim JS, Lenhardt R, Negishi C, Sessler DI. Bispectral EEG index during nitrous oxide administration. Anesthesiology 1998; 89: 671–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Song D, Joshi GP, White PF. Titration of volatile anesthetics using bispectral index facilitates recovery after ambulatory anesthesia. Anesthesiology 1997; 87: 842–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Goto T, Nakata V, Saito H, et al. Bispectral analysis of the electroencephalogram does not predict responsiveness to verbal command in patients emerging from xenon anaesthesia. Br J Anaesth 2000; 85: 359–67.PubMedGoogle Scholar
  26. 26.
    Cullen SC, Eger EI II, Cullen BF, Gregory P. Observations on the anesthetic effect of the combination of xenon and halothane. Anesthesiology 1969; 31: 305–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakata Y, Goto T, Ishiguro Y, et al. Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology 2001; 94: 611–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Gambus PL, Gregg KM, Shafer SL. Validation of the alfentanil canonical univariate parameter as a measure of opioid effect on the electroencephalogram. Anesthesiology 1995; 83: 747–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakata Y, Goto T, Saito H, et al. Plasma concentration of fentanyl with xenon to block somatic and hemodynamic responses to surgical incision. Anesthesiology 2000; 92: 1043–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Vuyk J, Lim T, Engbers FH, Burm AG, Vletter AA, Bovill JG Pharmacodynamics of alfentanil as a supplement to propofol or nitrous oxide for lower abdominal surgery in female patients. Anesthesiology 1993; 78: 1036–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Lathi KG, Vale PR, Losordo DW, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease: anesthetic management and results. Anesth Analg 2001; 92: 19–25.PubMedCrossRefGoogle Scholar
  32. 32.
    De Hert SG, Van der Linden PJ, ten Broecke PW, Vermeylen KT, Rodrigus IE, Stockman BA. Effects of desflurane and sevoflurane on length-dependent regulation of myocardial function in coronary surgery patients. Anesthesiology 2001; 95: 357–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Ma D, Wilhelm S, Maze M, Franks NP. Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth 2002; 89: 739–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Ma D, Tang H, Lynch J, Franks NP, Maze M, Grocott HP. Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology 2003; 98: 690–8.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2005

Authors and Affiliations

  • Martin Luginbühl
    • 1
    Email author
  • Steen Petersen-Felix
    • 1
  • Alex M. Zbinden
    • 1
  • Thomas W. Schnider
    • 2
  1. 1.Department of AnesthesiologyUniversity HospitalBernSwitzerland
  2. 2.Department of AnesthesiaKantonsspital St. GallenSt. GallenSwitzerland

Personalised recommendations