Advertisement

Canadian Journal of Anesthesia

, Volume 51, Issue 7, pp 723–727 | Cite as

Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia

  • Gerardo TusmanEmail author
  • Stephan H. Böhm
  • Fernando Suarez-Sipmann
  • Elsio Turchetto
Cardiothoracic Anesthesia, Respiration and Airway

Abstract

Purpose

The goal of this study was to analyze the effect of positive end-expiratory pressure (PEEP), with and without a lung recruitment maneuver, on dead space.

Methods

16 anesthetized patients were sequentially studied in three steps: 1) without PEEP (ZEEP), 2) with 5 cm H2O of PEEP and 3) with 5 cm H2O of PEEP after an alveolar recruitment strategy (ARS). Ventilation was maintained constant. The single breath test of CO2 (SBT-CO2), arterial oxygenation, end-expiratory lung volume (EELV) and respiratory compliance were recorded every 30 min.

Results

Physiological dead space to tidal volume decreased after ARS (0.45 ±0.01) compared with ZEEP (0.50 ± 0.07, P < 0.05) and PEEP (0.51 ± 0.06, P < 0.05). The elimination of CO2 per breath increased during PEEP (25 ± 3.3 mL · min−1) and ARS (27 ± 3.2 mL · min−1) compared to ZEEP (23 ± 2.6 mL · min−1, P < 0.05), although ARS showed larger values than PEEP(P < 0.05). Pa-etCO2 difference was lower after recruitment (0.9 ± 0.5 kPa, P < 0.05) compared to ZEEP (1.1 ± 0.5 kPa) and PEEP (1.2 ± 0.5 kPa). Slope II increased after ARS (63 ± 11%/L, P < 0.05) compared with ZEEP (46 ± 7.7%/L) and PEEP (56 ± 10%/L). Slope III decreased significantly after recruitment (0.13 ± 0.07 1/L) compared with ZEEP (0.21 ±0.1 1/L) and PEEP (0.18 ± 0.10 1/L). The angle between slope II and III decreased only after ARS. After lung recruitment, PaO2, EELV, and compliance increased significantly compared with ZEEP and PEEP

Conclusion

Lung recruitment improved the efficiency of ventilation in anesthetized patients.

Keywords

Dead Space Functional Residual Capacity Recruitment Maneuver Anesthetize Patient Alveolar Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Le recrutement alvéolaire améliore l’efficacité ventilatoire des poumons pendant Vanesthésie

Résumé

Objectif

Analyser l’effet de la pression télé-expiratoire positive (PEEP) sur l’espace mort, avec et sans recrutement pulmonaire.

Méthode

Nous avons réalisé une étude séquentielle en trois étapes auprès de 16 patients anesthésiés: 1) sans PEEP (ZEEP), 2) avec 5 cm H2O de PEEP et 3) avec 5 cm H2O de PEEP à la suite d’une stratégie de recrutement alvéolaire (SRA). La ventilation a été maintenue constante. L’épreuve de l’apnée inspiratoire du CO2, l’oxygénation artérielle, le volume pulmonaire télé-expiratoire (VPTE) et la compliance respiratoire ont été enregistrées toutes les 30 min.

Résultats

Le rapport espace mort/volume courant a été réduit après la SRA (0,45 ±0,01) comparée à la ZEEP (0,50 ± 0,07, P < 0,05) et à la PEEP (0,51 ± 0,06, P < 0,05). Lélimination du CO2 pour chaque respiration a augmenté pendant la PEEP (25 ± 3,3 mL · min−1) et la SRA (21 ± 3,2 mL · min−1) comparées à la ZEEP (23 ± 2,6 mL · min−1, P < 0,05), même si la SRA a présenté des valeurs plus élevées que la PEEP (P < 0,05). La différence Pa-etCO2 a été plus faible après le recrutement (0,9 ± 0,5 kPa, P < 0,05) comparé à la ZEEP (1,1 ± 0,5 kPa) et à la PEEP (1,2 ± 0,5 kPa). La pente II s’est accentuée après la SRA (63 ± 11 %/L, P < 0,05) comparée à la ZEEP (46 ±7,7 %/L) et à la PEEP (56 ± 10 %/L). La pente III s’est abaissée significativement après le recrutement (0,13 ± 0,01 1/L) comparé à la ZEEP (0,21 ±0,11 1/L) et à la PEEP (0,18 ± 0,10 1/L). Langle entre les pentes II et III a diminué seulement après la SRA. Après le recrutement alvéolaire, comparé à la ZEEP et à la PEEP, la PaO2, le VPTE et la compliance ont augmenté significativement.

Conclusion

Le recrutement alvéolaire améliore l’efficacité de la ventilation chez les patients anesthésiés.

References

  1. 1.
    Bendixen HH, Hedley-White J, Chir B, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. N Engl J Med 1963; 269: 991–6.PubMedGoogle Scholar
  2. 2.
    Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Svensson L, Tokios L. Pulmonary densities during anesthesia with muscular relaxation — a proposal of atelectasis. Anesthesiology 1985; 62: 422–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Hedenstierna G, Strandberg A, Brismar B, Lundquist H, Svensson L, Tokics L. Functional residual capacity, thoracoabdominal dimensions, and central blood volume during general anesthesia with muscle paralysis and mechanical ventilation. Anesthesiology 1985, 62: 247–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G. Re-expansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth 1993; 71: 788–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Tusman G, Böhm SH, Vazquez de Anda GF, do Campo JL, Lachmann B. ‘Alveolar recruitment strategy’ improves arterial oxygenation during general anaesthesia. Br J Anaesth 1999; 82: 8–13.PubMedGoogle Scholar
  6. 6.
    Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 347–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Böhm SH, Vazquez de Anda GF, Lachmann B. The open lung concept.In: Vincent JL (Ed.). Yearbook of Intensive Care and Emergency Medicine, 2nd ed. Berlin, Heidelberg, New York: Springer-Verlag; 1999: 430–40.Google Scholar
  8. 8.
    Fletcher R, Jonson B, Cumming G, Brew J. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 1981; 53: 77–88.PubMedCrossRefGoogle Scholar
  9. 9.
    Hofbrand BL. The expiratory capnogram: a measure of ventilation-perfusion inequalities. Thorax 1966; 21: 518–24.CrossRefGoogle Scholar
  10. 10.
    Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration. Br J Anaesth 1984; 56: 109–19.PubMedCrossRefGoogle Scholar
  11. 11.
    Tusman G, Böhm SH, Tempra A, et al. Effects of recruitment maneuver on atelectasis in anesthetized children. Anesthesiology 2003; 98: 14–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Naureckas ET, Dawson CA, Gerber BS, et al. Airway reopening pressure in isolated rat lungs. J Appl Physiol 1994; 76: 1372–7.PubMedGoogle Scholar
  13. 13.
    Bergman NA, Tien YK. Contribution of the closure of pulmonary units to impaired oxygenation during anesthesia. Anesthesiology 1983; 59: 395–401.PubMedCrossRefGoogle Scholar
  14. 14.
    Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, Van de Woestijne KP. The senile lung. Comparison with normal and emphysematous lungs. 1. Structural aspects. Chest 1992; 101: 793–9.PubMedCrossRefGoogle Scholar
  15. 15.
    You B, Peslin R, Duvivier C, Vu VD, Grilliat JP. Expiratory capnography in asthma: evaluation of various shape indices. Eur Respir J 1994; 7: 318–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwardt JD, Neufeld GR, Baumgardner JE, Scherer PW. Noninvasive recovery of acinar anatomic information from CO2 expirograms. Ann Biomed Eng 1994; 22: 293–306.PubMedCrossRefGoogle Scholar
  17. 17.
    Ream RS, Schreiner MS, Neff JD, et al. Volumetric capnography in children. Influence of growth on the alveolar plateau slope. Anesthesiology 1995; 82: 64–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Schwardt JD, Gobran SR, Neufeld GR, Aukburg SJ, Scherer PW. Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann Biomed Eng 1991; 19: 679–97.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2004

Authors and Affiliations

  • Gerardo Tusman
    • 1
    Email author
  • Stephan H. Böhm
    • 3
  • Fernando Suarez-Sipmann
    • 4
  • Elsio Turchetto
    • 2
  1. 1.Department of AnesthesiologyHospital Privado de ComunidadMar del PlataArgentina
  2. 2.Department of Intensive Care MedicineHospital Privado de ComunidadMar del PlataArgentina
  3. 3.Department of AnesthesiologyUniversity HospitalHamburg-Eppendorf, HamburgGermany
  4. 4.Department of Critical Care MedicineFundación Jimenez DíazMadridSpain

Personalised recommendations