Advertisement

Canadian Journal of Anesthesia

, Volume 51, Issue 4, pp 293–310 | Cite as

Massive transfusion and coagulopathy: pathophysiology and implications for clinical management

  • Jean-François Hardy
  • Philippe de Moerloose
  • Marc Samama
  • Members of the Groupe d’Intérêt en Hémostase Périopératoire
General Anesthesia

Abstract

Purpose

To review the pathophysiology of coagulopathy in massively transfused, adult and previously hemostatically competent patients in both elective surgical and trauma settings, and to recommend the most appropriate treatment strategies.

Methods

Medline was searched for articles on “massive transfusion,” “transfusion,” “trauma,” “surgery,” “coagulopathy” and “hemostatic defects.” Agroup of experts reviewed the findings.

Principal findings

Coagulopathy will result from hemodilution, hypothermia, the use of fractionated blood products and disseminated intravascular coagulation. The clinical significance of the effects of hydroxyethyl starch solutions on hemostasis remains unclear. Maintaining a normal body temperature is a first-line, effective strategy to improve hemostasis during massive transfusion. Red cells play an important role in coagulation and hematocrits higher than 30% may be required to sustain hemostasis. In elective surgery patients, a decrease in fibrinogen concentration is observed initially while thrombocytopenia is a late occurrence. In trauma patients, tissue trauma, shock, tissue anoxia and hypothermia contribute to the development of disseminated intravascular coagulation and microvascular bleeding. The use of platelets and/or fresh frozen plasma should depend on clinical judgment as well as the results of coagulation testing and should be used mainly to treat a clinical coagulopathy.

Conclusions

Coagulopathy associated with massive transfusion remains an important clinical problem. It is an intricate, multifactorial and multicellular event. Treatment strategies include the maintenance of adequate tissue perfusion, the correction of hypothermia and anemia, and the use of hemostatic blood products to correct microvascular bleeding.

Keywords

Disseminate Intravascular Coagulation Hydroxyethyl Starch Massive Transfusion Fibrinogen Concentration Primary Hemostasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of abbreviations

aPTT

activated partial thromboplastin time

BT

bleeding time

DIC

disseminated intravascular coagulation

FFP

fresh frozen plasma

HES

hydroxyethyl starch

MT

massive transfusion

MVB

microvascular bleeding

MWB

modified whole blood

PRBC

packed red blood cells

PT

prothrombin time

RBC

red blood cells

Transfusion massive et coagulopathie: physiopathologie et implications cliniques

Résumé

Objectif

Revoir la physiopathologie de la coagulopathie chez les adultes transfusés massivement et auparavant compétents sur le plan hémostatique, à la fois dans le contexte d’une intervention chirurgicale réglée ou à la suite d’un traumatisme. Recommander les stratégies thérapeutiques les plus appropriées.

Méthode

Dans Medline, nous avons cherché les articles traitant de “massive transfusion,” “transfusion,” “trauma,” “surgery,”“coagulopathy” et “hemostatic defects.” Un groupe d’experts a examiné les résultats.

Constatations principales

La coagulopathie résulte de l’hémodilution, l’hypothermie, l’usage de produits sanguins fractionnés et la coagulation intravasculaire disséminée. La portée clinique des effets des solutions d’hydroxyéthyl-amidon sur l’hémostase n’est toujours pas claire. Le maintien d’une température corporelle normale est une stratégie de première intention efficace pour améliorer l’hémostase pendant la transfusion massive. Les globules rouges sont importants dans la coagulation et des hématocrites supérieurs à 30% pourraient être nécessaires à une hémostase adéquate. Chez les patients en chirurgie réglée, une baisse de la concentration de fibrinogène est observée précocement tandis que la thrombocytopénie est plus tardive. Chez les traumatisés, le trauma tissulaire, le choc, l’anoxie et l’hypothermie tissulaires contribuent au développement d’une coagulation intravasculaire disséminée et du saignement microvasculaire. L’utilisation de plaquettes et/ou de plasma frais congelé dépendra du jugement du clinicien ainsi que des résultats des tests de coagulation. La transfusion devra surtout viser le traitement d’une coagulopathie clinique (saignement microvasculaire).

Conclusion

La coagulopathie associée à la transfusion massive demeure un important problème clinique. C’est un événement complexe, multifactoriel et multicellulaire. Le traitement comprend le maintien d’une perfusion tissulaire adéquate, la correction de l’hypothermie et de l’anémie et l’usage de produits sanguins hémostatiques pour corriger le saignement microvasculaire.

References

  1. 1.
    Crosson JT. Massive transfusion. Clin Lab Med 1996; 16: 873–82.PubMedGoogle Scholar
  2. 2.
    Faringer PD, Mullins RJ, Johnson RL, Trunkey DD. Blood component supplementation during massive transfusion of AS-1 red cells in trauma patients. J Trauma 1993; 34: 481–5; discussion 485–7.PubMedGoogle Scholar
  3. 3.
    Murray DJ, Pennell BJ, Weinstein SL, Olson JD. Packed red cells in acute blood loss: dilutional coagulopathy as a cause of surgical bleeding. Anesth Analg 1995; 80: 336–42.PubMedGoogle Scholar
  4. 4.
    Reed RL, Ciavarella D, Heimbach DM, et al. Prophylactic platelet administration during massive transfusion. A prospective, randomized, double-blind clinical study. Ann Surg 1986; 203: 40–8.PubMedGoogle Scholar
  5. 5.
    Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico CJ. Hemostasis in massively transfused trauma patients. Ann Surg 1979; 190: 91–9.PubMedGoogle Scholar
  6. 6.
    Hiippala S. Replacement of massive blood loss. Vox Sang 1998; 74(Suppl 2): 399–407.PubMedGoogle Scholar
  7. 7.
    Simmons RL, Collins JA, Heisterkamp CA 3rd, Mills DE, Andren R, Phillips LL. Coagulation disorders in combat casualties. I. Acute changes after wounding. II. Effects of massive transfusion. III. Post-resuscitative changes. Ann Surg 1969; 169: 455–82.PubMedGoogle Scholar
  8. 8.
    Leslie SD, Toy PT. Laboratory hemostatic abnormalities in massively transfused patients given red blood cells and crystalloid. Am J Clin Pathol 1991; 96: 770–3.PubMedGoogle Scholar
  9. 9.
    Stainsby D, MacLennan S, Hamilton PJ. Management of massive blood loss: a template guideline. Br J Anaesth 2000; 85: 487–91.PubMedGoogle Scholar
  10. 10.
    Guay J, Ozier Y, de Moerloose P, Samana CM, Belisle S, Hardy JF. Polytrauma and hemostatic anomalies (French). Can J Anaesth 1998; 45: 683–91.PubMedGoogle Scholar
  11. 11.
    Miller RD, Robbins TO, Tong MJ, Barton SL. Coagulation defects associated with massive blood transfusions. Ann Surg 1971; 174: 794–801.PubMedGoogle Scholar
  12. 12.
    Ng KF, Lam CC, Chan LC. In vivo effect of haemodilution with saline on coagulation: a randomized controlled trial. Br J Anaesth 2002; 88: 475–80.PubMedGoogle Scholar
  13. 13.
    Ruttmann TG, James MF, Finlayson J. Effects on coagulation of intravenous crystalloid or colloid in patients undergoing peripheral vascular surgery. Br J Anaesth 2002; 89: 226–30.PubMedGoogle Scholar
  14. 14.
    Ruttmann TG. Haemodilution enhances coagulation. Br J Anaesth 2002; 88: 470–2.PubMedGoogle Scholar
  15. 15.
    Mortelmans YJ, Vermaut G, Verbruggen AM, et al. Effects of 6% hydroxyethyl starch and 3% modified fluid gelatin on intravascular volume and coagulation during intraoperative hemodilution. Anesth Analg 1995; 81: 1235–42.PubMedGoogle Scholar
  16. 16.
    Samama CM. Traumatic emergencies and hemostasis (French). Cah Anesthesiol 1995; 43: 479–82.PubMedGoogle Scholar
  17. 17.
    Mardel SN, Saunders FM, Allen H, et al. Reduced quality of clot formation with gelatin-based plasma substitutes. Br J Anaesth 1998; 80: 204–7.PubMedGoogle Scholar
  18. 18.
    de Jonge F, Levi M, Berends F, van der Ende AE, ten Cate JW, Stoutenbeek CP. Impaired haemostasis by intravenous administration of a gelatin-based plasma expander in human subjects. Thromb Haemost 1998; 79: 286–90.PubMedGoogle Scholar
  19. 19.
    Strauss RG. Review of the effects of hydroxyethyl starch on the blood coagulation system. Transfusion 1981; 21: 299–302.PubMedGoogle Scholar
  20. 20.
    Traylor RJ, Pearl RG. Crystalloid versus colloid versus colloid: all colloids are not created equal. Anesth Analg 1996; 83: 209–12.PubMedGoogle Scholar
  21. 21.
    de Jonge F, Levi M. Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med 2001; 29: 1261–7.PubMedGoogle Scholar
  22. 22.
    Boldt J, Muller M, Heesen M, Heyn O, Hempelmann G. Influence of different volume therapies on platelet function in the critically ill. Intensive Care Med 1996; 22: 1075–81.PubMedGoogle Scholar
  23. 23.
    Boldt J, Haisch G, Suttner S, Kumle B, Schellhaass A. Effects of a new modified, balanced hydroxyethyl starch preparation (Hextend) on measures of coagulation. Br J Anaesth 2002; 89: 722–8.PubMedGoogle Scholar
  24. 24.
    Strauss RG, Pennell BJ, Stump DC. A randomized, blinded trial comparing the hemostatic effects of pentastarch versus hetastarch. Transfusion 2002; 42: 27–36.PubMedGoogle Scholar
  25. 25.
    Langeron O, Doelberg M, Ang ET, Bonnet F, Capdevila X, Coriat P. Voluven, a lower substituted novel hydroxyethyl starch (HES 130/0.4), causes fewer effects on coagulation in major orthopedic surgery than HES 200/0.5. Anesth Analg 2001; 92: 855–62.PubMedGoogle Scholar
  26. 26.
    Innerhofer P, Fries D, Margreiter J, et al. The effects of perioperatively administered colloids and crystalloids on primary platelet-mediated hemostasis and clot formation. Anesth Analg 2002; 95: 858–65.PubMedGoogle Scholar
  27. 27.
    Knutson JE, Deering JA, Hall FW, et al. Does intraoperative hetastarch administration increase blood loss and transfusion requirements after cardiac surgery? Anesth Analg 2000; 90: 801–7.PubMedGoogle Scholar
  28. 28.
    Gan TJ, Bennett-Guerrero E, Phillips-Bute B, et al. Hextend, a physiologically balanced plasma expander for large volume use in major surgery: a randomized phase III clinical trial. Hextend Study Group. Anesth Analg 1999; 88: 992–8.PubMedGoogle Scholar
  29. 29.
    Haynes GR, Bailey MIC. Excessive use of hetastarch: an iatrogenic cause of bleeding and hypocalcemia? Anesth Analg 2000; 90: 1455–6.PubMedGoogle Scholar
  30. 30.
    American College of Surgeons. Advanced Trauma Life Support Course Manual. Chicago, Illinois: American College of Surgeons; 1997: 103–12.Google Scholar
  31. 31.
    Toshihara H, Yamamoto T, Mihara H. Changes in coagulation and fibrinolysis occurring in dogs during hypothermia. Thromb Res 1985; 37: 503–12.Google Scholar
  32. 32.
    Rohrer MJ, Natale AM. Effect of hypothermia on the coagulation cascade. Crit Care Med 1992; 20: 1402–5.PubMedGoogle Scholar
  33. 33.
    Reed RL 2nd, Johnston TD, Hudson JD, Fischer RP. The disparity between hypothermic coagulopathy and clotting studies. J Trauma 1992; 33: 465–70.PubMedGoogle Scholar
  34. 34.
    Pina-Cabral JM, Ribeiro-da-Silva A, Almeida-Dias A. Platelet sequestration during hypothermia in dogs treated with sulphinpyrazone and ticlopidine reversibility accelerated after intra-abdominal rewarming. Thromb Haemost 1985; 54: 838–41.PubMedGoogle Scholar
  35. 35.
    Oung CM, Li MS, Shum-Tim D, Chiu RC, Hinchey EJ. In vivo study of bleeding time and arterial hemorrhage in hypothermic versus normothermic animals. J Trauma 1993; 35: 251–4.PubMedGoogle Scholar
  36. 36.
    Valeri CR, Feingold H, Cassidy G, Ragno G, Khuri S, Altschule MD. Hypothermia-induced reversible platelet dysfunction. Ann Surg 1987; 205: 175–81.PubMedGoogle Scholar
  37. 37.
    Valeri CR, Khabbaz K, Khuri SF, et al. Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass. J Thorac Cardiovasc Surg 1992; 104: 108–16.PubMedGoogle Scholar
  38. 38.
    Michehon AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR. Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost 1994; 71: 633–40.Google Scholar
  39. 39.
    Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 1996; 347: 289–92.PubMedGoogle Scholar
  40. 40.
    Douning LK, Ramsay MA, Swygert TH, et al. Temperature corrected thrombelastography in hypothermic patients. Anesth Analg 1995; 81: 608–11.PubMedGoogle Scholar
  41. 41.
    Cosgriff N, Moore EE, Sauaia A, Kenny-Moynihan M, Burch JM, Galloway B. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma 1997; 42: 857–61; discussion 861–2.PubMedGoogle Scholar
  42. 42.
    Ferrara A, MacArthur JD, Wright HK, Modlin IM, McMillen MA. Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am J Surg 1990; 160: 515–8.PubMedGoogle Scholar
  43. 43.
    Valles J, Santos MT, Aznar J, et al. Erythrocytes metabolically enhance collagen-induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release, and recruitment. Blood 1991; 78: 154–62.PubMedGoogle Scholar
  44. 44.
    Santos MT, Valles J, Marcus AJ, et al. Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment. J Clin Invest 1991; 87: 571–80.PubMedGoogle Scholar
  45. 45.
    Valles J, Santos MT, Aznar J, et al. Platelet-erythrocyte interactions enhance alpha(IIb)beta(3) integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo. Blood 2002; 99: 3978–84.PubMedGoogle Scholar
  46. 46.
    Ouaknine-Orlando B, Samama CM, Riou B, et al. Role of the hematocrit in a rabbit model of arterial thrombosis and bleeding. Anesthesiology 1999; 90: 1454–61.Google Scholar
  47. 47.
    Peyrou V, Lormeau JC, Herault JP, Gaich C, Pfliegger AM, Herbert JM. Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost 1999; 81: 400–6.PubMedGoogle Scholar
  48. 48.
    Valles J, Santos MT, Aznar J, Velert M, Barbera G, Carmena R. Modulatory effect of erythrocytes on the platelet reactivity to collagen in IDDM patients. Diabetes 1997; 46: 1047–53.PubMedGoogle Scholar
  49. 49.
    Valles J Santos MT, Aznar J, et al. Erythrocyte promotion of platelet reactivity decreases the effectiveness of aspirin as an antithrombotic therapeutic modality: the effect of low-dose aspirin is less than optimal in patients with vascular disease due to prothrombotic effects of erythrocytes on platelet reactivity. Circulation 1998; 97: 350–5.PubMedGoogle Scholar
  50. 50.
    Santos MT, Valles J, Aznar J, Marcus AJ Broekman MJ, Safier LB. Prothrombotic effects of erythrocytes on platelet reactivity. Reduction by aspirin. Circulation 1997; 95: 63–8.PubMedGoogle Scholar
  51. 51.
    Eberst ME, Berkowitz LR. Hemostasis in renal disease: pathophysiology and management. Am J Med 1994; 96: 168–79.PubMedGoogle Scholar
  52. 52.
    Tangelder GJ Teirlinck HC, Slaaf DW, Reneman RS. Distribution of blood platelets flowing in arterioles. Am J Physiol 1985; 248(3 Pt 2): H318–23.PubMedGoogle Scholar
  53. 53.
    Teirlinck HC, Tangelder GJ Slaaf DW, Muijtjens AM, Arts T, Reneman RS. Orientation and diameter distribution of rabbit blood platelets flowing in small arterioles. Biorheology 1984; 21: 317–31.PubMedGoogle Scholar
  54. 54.
    Uijttewaal WS, Nijhof EJ, Bronkhorst PJ, Den Hartog E, Heethaar RM. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am J Physiol 1993; 264(4 Pt 2): H1239–44.PubMedGoogle Scholar
  55. 55.
    Blajchman MA, Bordin JO, Bardossy L, Heddle NM. The contribution of the haematocrit to thrombocytopenic bleeding in experimental animals. Br J Haematol 1994; 86: 347–50.PubMedGoogle Scholar
  56. 56.
    Escolar G, Garrido M, Mazzara R, Castillo R, Ordinas A. Experimental basis for the use of red cell transfusion in the management of anemic-thrombocytopenic patients. Transfusion 1988; 28: 406–11.PubMedGoogle Scholar
  57. 57.
    Livio M, Benigni A, Remuzzi G. Coagulation abnormalities in uremia. Semin Nephrol 1985; 5: 82–90.PubMedGoogle Scholar
  58. 58.
    Small M, Lowe GD, Cameron E, Forbes CD. Contribution of the haematocrit to the bleeding time. Haemostasis 1983; 13: 379–84.PubMedGoogle Scholar
  59. 59.
    Ho CH. The hemostatic effect of packed red cell transfusion in patients with anemia. Transfusion 1998; 38: 1011–4.PubMedGoogle Scholar
  60. 60.
    Valeri CR, Cassidy G, Pivacek LE, et al. Anemiainduced increase in the bleeding time: implications for treatment of nonsurgical blood loss. Transfusion 2001; 41: 977–83.PubMedGoogle Scholar
  61. 61.
    Khun SF, Wolfe JA, ]osa M, et al. Hematologic changes during and after cardiopulmonary bypass and their relationship to the bleeding time and nonsurgical blood loss. J Thorac Cardiovasc Surg 1992; 104: 94–107.Google Scholar
  62. 62.
    McLoughlin TM Jr, Fontana JL, Alving B, Mongan PD, Bunger R. Profound normovolemic hemodilution: hemostatic effects in patients and in a porcine model. Anesth Analg 1996; 83: 459–65.PubMedGoogle Scholar
  63. 63.
    Friesen RH, Campbell DN, Clarke DR, Tornabene MA. Modified ultrafiltration attenuates dilutional coagulopathy in pediatric open heart operations. Ann Thorac Surg 1997; 64: 1787–9.PubMedGoogle Scholar
  64. 64.
    Naik SK, Knight A, Elliott M. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation 1991; 84(5 Suppl): III422–31.PubMedGoogle Scholar
  65. 65.
    Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 1995; 81: 360–5.PubMedGoogle Scholar
  66. 66.
    Ciavarella D, Reed RL, Counts RB, et al. Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient. Br J Haematol 1987; 67: 365–8.PubMedGoogle Scholar
  67. 67.
    Triplett DA. Coagulation and bleeding disorders: review and update. Clin Chem 2000; 46(8 Pt 2): 1260–9.PubMedGoogle Scholar
  68. 68.
    Fitzgerald DJ. Vascular biology of thrombosis: the role of platelet-vessel wall adhesion. Neurology 2001; 57(5 Suppl 2): S1–4.PubMedGoogle Scholar
  69. 69.
    Fuss C, Palmaz JC, Sprague FA. Fibrinogen: structure, function, and surface interactions. J Vasc Interv Radiol 2001; 12: 677–82.PubMedGoogle Scholar
  70. 70.
    Nurden AF, Nurden P. A review of the role of platelet membrane glycoproteins in the platelet-vessel wall interaction. Baillieres Clin Haematol 1993; 6: 653–90.PubMedGoogle Scholar
  71. 71.
    Calvete JJ. On the structure and function of platelet integrin alpha IIb beta 3, the fibrinogen receptor. Proc Soc Exp Biol Med 1995; 208: 346–60.PubMedGoogle Scholar
  72. 72.
    Hirshberg A, Dugas M, Battez EI, Scott BG, Wall MJ Jr, Mattox KL. Minimizing dilutional coagulopathy in exsanguinating hemorrhage: a computer simulation. J Trauma 2003; 54: 454–63.PubMedGoogle Scholar
  73. 73.
    Murray DJ, Olson J, Strauss R, Tinker JH. Coagulation changes during packed red cell replacement of major blood loss. Anesthesiology 1988; 69: 839–45.PubMedGoogle Scholar
  74. 74.
    Harke H, Rahman S. Haemostatic disorders in massive transfusion. Bibl Haematol 1980; 46: 179–88.PubMedGoogle Scholar
  75. 75.
    Harvey MF, Greenfield TP, Sugrue ME, Rosenfeld D. Massive blood transfusion in a tertiary referral hospital. Clinical outcomes and haemostatic complications. Med J Aust 1995; 163: 356–9.PubMedGoogle Scholar
  76. 76.
    Hulka F, Mullins RJ, Frank EH. Blunt brain injury activates the coagulation process. Arch Surg 1996; 131: 923–7; discussion 927–8.PubMedGoogle Scholar
  77. 77.
    Mannucci FM, Federici AB, Sirchia G. Hemostasis testing during massive blood replacement. A study of 172 cases. Vox Sang 1982; 42: 113–23.PubMedGoogle Scholar
  78. 78.
    Harrigan C, Lucas CE, Ledgerwood AM, Mammen EF. Primary hemostasis after massive transfusion for injury. Am Surg 1982; 48: 393–6.PubMedGoogle Scholar
  79. 79.
    Harrigan C, Lucas CE, Ledgerwood AM, Walz DA, Mammen EF. Serial changes in primary hemostasis after massive transfusion. Surgery 1985; 98: 836–44.PubMedGoogle Scholar
  80. 80.
    Rodgers RP, Levin J. A critical reappraisal of the bleeding time. Semin Thromb Hemost 1990; 16: 1–20.PubMedGoogle Scholar
  81. 81.
    Samama CM, Quezada R, Riou B, et al. Intraoperative measurement of activated partial thromboplastin time and prothrombin time with a new compact monitor. Acta Anaesthesiol Scand 1994; 38: 232–7.PubMedGoogle Scholar
  82. 82.
    Turi DC, Peerschke EI. Sensitivity of three activated partial thromboplastin time reagents to coagulation factor deficiencies. Am J Clin Pathol 1986; 85: 43–9.PubMedGoogle Scholar
  83. 83.
    Lucas CE, Ledgerwood AM. Clinical significance of altered coagulation tests after massive transfusion for trauma. Am Surg 1981; 47: 125–30.PubMedGoogle Scholar
  84. 84.
    Hewson JR, Neame PB, Kumar N, et al. Coagulopathy related to dilution and hypotension during massive transfusion. Crit Care Med 1985; 13: 387–91.PubMedGoogle Scholar
  85. 85.
    Tuman KJ, Spiess BD, McCarthy RJ, Ivankovich AD. Effects of progressive blood loss on coagulation as measured by thrombelastography. Anesth Analg 1987; 66: 856–63.PubMedGoogle Scholar
  86. 86.
    Cammerer U, Dietrich W, Rampf T, Braun SL, Richter JA. The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery. Anesth Analg 2003; 96: 51–7.PubMedGoogle Scholar
  87. 87.
    Forestier F, Coiffic A, Mouton C, Ekouevi D, Chene G, Janvier G. Platelet function point-of-care tests in post-bypass cardiac surgery: are they relevant? Br J Anaesth 2002; 89: 715–21.PubMedGoogle Scholar
  88. 88.
    Lasne D, Fiemeyer A, Chatellier G, Chammas C, Baron JF, Aiach M. A study of platelet functions with a new analyzer using high shear stress (PFA 100) in patients undergoing coronary artery bypass graft. Thromb Haemost 2000; 84: 794–9.PubMedGoogle Scholar
  89. 89.
    Kleinman S, Chan P, Robillard P. Risks associated with transfusion of cellular blood components in Canada. Transfus Med Rev 2003; 17: 120–62.PubMedGoogle Scholar
  90. 90.
    Blumberg N, Laczin J, McMican A, Heal J, Arvan D. A critical survey of fresh-frozen plasma use. Transfusion 1986; 26: 511–3.PubMedGoogle Scholar
  91. 91.
    Anonymous. Guideline for the use of fresh-frozen plasma. Medical Directors Advisory Committee, National Blood Transfusion Council. S Afr Med J 1998; 88: 1344–7.Google Scholar
  92. 92.
    Hellstern P, Haubelt H. Indications for plasma in massive transfusion. Thromb Res 2002; 107(Suppl1): S19–22.PubMedGoogle Scholar
  93. 93.
    Horsey PJ. Multiple trauma and massive transfusion (Editorial). Anaesthesia 1997; 52: 1027–9.PubMedGoogle Scholar
  94. 94.
    Erber WN. Massive blood transfusion in the elective surgical setting. Transfus Apheresis Sci 2002; 27: 83–92.Google Scholar
  95. 95.
    Pantanowitz L, Kruskall MS, Uhl L. Cryoprecipitate. Patterns of use. Am J Clin Pathol 2003; 119: 874–81.PubMedGoogle Scholar
  96. 96.
    Cinat ME, Wallace WC, Nastanski F, et al. Improved survival following massive transfusion in patients who have undergone trauma. Arch Surg 1999; 134: 964–8; discussion 968–70.PubMedGoogle Scholar
  97. 97.
    Rivers E, Nguyen B, Havstad S, et al. Early goaldirected therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368–77.PubMedGoogle Scholar
  98. 98.
    Al Douri M, Shafi T, Al Khudairi D, et al. Effect of the administration of recombinant activated factor VII (rFVIIa; NovoSeven) in the management of severe uncontrolled bleeding in patients undergoing heart valve replacement surgery. Blood Coagul Fibrinolysis 2000; 11(Suppl 1): S121–7.PubMedGoogle Scholar
  99. 99.
    Hendriks HG, van der Maaten JM, de Wolf J, Waterbolk TW, Slooff MJ, van der Meer J. An effective treatment of severe intractable bleeding after valve repair by one single dose of activated recombinant factor VII. Anesth Analg 2001; 93: 287–9.PubMedGoogle Scholar
  100. 100.
    Jeffers L, Chalasani N, Balart L, Pyrsopoulos N, Erhardtsen E. Safety and efficacy of recombinant factor VIIa in patients with liver disease undergoing laparoscopic liver biopsy. Gastroenterology 2002; 123: 118–26.PubMedGoogle Scholar
  101. 101.
    Arkin S, Blei F, Fetten J, et al. Human coagulation factor FVIIa (recombinant) in the management of limb-threatening bleeds unresponsive to alternative therapies: results from the NovoSeven emergency-use programme in patients with severe haemophilia or with acquired inhibitors. Blood Coagul Fibrinolysis 2000; 11: 255–9.PubMedGoogle Scholar
  102. 102.
    Poon MC, d’Oiron R. Recombinant activated factor VII (NovoSeven) treatment of platelet-related bleeding disorders. International Registry on Recombinant Factor VIIa and Congenital Platelet Disorders Group. Blood Coagul Fibrinolysis 2000; 11(Suppl 1): S55–68.PubMedGoogle Scholar
  103. 103.
    Martinowitz U, Holcomb JB, Pusateri AE, et al. Intravenous rFVIIa administered for hemorrhage control in hypothermic coagulopathic swine with grade V liver injuries. J Trauma 2001; 50: 721–9.PubMedGoogle Scholar
  104. 104.
    Martinowitz U, Kenet G, Segal E, et al. Recombinant activated factor VII for adjunctive hemorrhage control in trauma. J Trauma 2001; 51: 431–8; discussion 438–9.PubMedGoogle Scholar
  105. 105.
    Tobias JD. Synthetic factor VIIa to treat dilutional coagulopathy during posterior spinal fusion in two children. Anesthesiology 2002; 96: 1522–5.PubMedGoogle Scholar
  106. 106.
    Martinowitz U, Kenet G, Lubetski A, Luboshitz J, Segal E. Possible role of recombinant activated factor VII (rFVIIa) in the control of hemorrhage associated with massive trauma. Can J Anesth 2002; 49: S15–20.PubMedGoogle Scholar
  107. 107.
    Hedner U. NovoSeven as a universal haemostatic agent. Blood Coagul Fibrinolysis 2000; 11(Suppl 1): S107–11.PubMedGoogle Scholar
  108. 108.
    Allen GA, Hoffman M, Roberts HR, Monroe DM 3rd. Recombinant activated factor VII: its mechanism of action and role in the control of hemorrhage. Can J Anesth 2002; 49: S7–14.PubMedGoogle Scholar
  109. 109.
    Roberts HR. Clinical experience with activated factor VII: focus on safety aspects. Blood Coagul Fibrinolysis 1998; 9 (Suppl 1): S115–8.PubMedGoogle Scholar
  110. 110.
    Hardy JF. Managing uncontrolled hemorrhage in trauma and surgery: a novel and promising approach. Can J Anesth 2002; 49: S4–6.Google Scholar
  111. 111.
    Murkin JM. A novel hemostatic agent: the potential role of recombinant activated factor VII (rFVIIa) in anesthetic practice. Can J Anesth 2002; 49: S21–6.PubMedGoogle Scholar
  112. 112.
    Koh MB, Hunt BJ. The management of perioperative bleeding. Blood Rev 2003; 17: 179–85.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2004

Authors and Affiliations

  • Jean-François Hardy
    • 1
  • Philippe de Moerloose
    • 2
  • Marc Samama
    • 3
  • Members of the Groupe d’Intérêt en Hémostase Périopératoire
  1. 1.Département d’anesthésiologiePorte AS-1115-3, Pavillon Lachapelle, CHUM Hôpital Notre DameMontréalCanada
  2. 2.Hemostasis unitHôpital Universitaire de GenèveGenèveSuisse
  3. 3.Département d’anesthésie-réanimationHôpital AvicenneBobignyFrance

Personalised recommendations