Canadian Journal of Anaesthesia

, Volume 43, Issue 7, pp 741–748 | Cite as

Halothane hepatotoxicity and hepatic free radical metabolism in guinea pigs; the effects of vitamin E

  • I. Durak
  • T. Güven
  • M. Birey
  • H. S. Öztürk
  • Ö. Kurtipek
  • M. Yel
  • B. Dikmen
  • O. Canbolat
  • M. Kavutcu
  • M. Kaçmaz
Laboratory Investigations



The aim of this study was to investigate the relation between halothane hepatotoxicity and hepatic free radical metabolism and to establish a possible protective role of vitamin E against halothane hepatotoxicity.


Twenty-eight guinea pigs were used in the experiments. Halothane (1.5% v/v) in oxygen (100%) was given to the animals for 90 min over three days. Livers from animals were then taken and prepared for the assays. In the enzymatic study, Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured. As a peroxidation index, the malondialdehyde (MDA) concentration was determined. Also, electron spin resonance (ESR) analysis and electron microscopy (EM) were performed. Results: Superoxide dismutase (1168.3 ± 78.2 U · mg−1) and glutathione peroxidase (14.9 ± 6.2 mIU · mg−1) activities were decreased, but catalase activity (1260.0 ± 250.6 lU · mg−1) and malondialdehyde concentration (11.5 ± 1.8 ppb) were increased in liver tissues exposed to halothane compared with control values (1382.2 ± 91.8 U · mg−1 for SOD, 27.8 ± 5.2 mIU · mg−1 for GSH-Px, 840.2 ± 252.4 IU · mg−1 for CAT and 10.0 ± 1.0 ppb for MDA). Electron spin resonance analysis revealed a peak of CF3 CHCl radical in the exposed tissue. Electron microscopy indicated ultrastructural changes in the hepatic cells of both halothane groups with and without vitamin E treatment.


Halothane causes impairment in the hepatic antioxidant defense system and accelerates peroxidation reactions. As a result, some ultrastructural changes in hepatic tissues occur due to halothane treatment. Although vitamin E prevents peroxidative damage, it does not ameliorate ultrastructural changes caused by halothane treatment. This shows that halothane toxicity results not only from impaired hepatic antioxidant defense system but also from other, unknown causes.

Key words

anaesthetics, volatile: halothane toxicity complications: hepatic toxicity: hepatic 



Cette étude visait à examiner la relation possible entre l’hépatotoxicité à l’halothane et le métabolisme des radicaux libres et à vérifier si la vitamine E protège contre l’hépatotoxicité à, l’halothane.


Vingt-huit cobayes ont été utilisés. De l’halothane (15% v/v) en oxygène (100%) a été administré aux animaux pendant 90 min sur une période de trois jours. Les foies ont alors été prélevés et préparés pour fin d’analyse. Pour l’étude enzymatique, l’activité de la superoxyde dismutase (SOD), de la glutathione peroxydase (GSH-Px) et de la catalase (CAT) a été mesurée. En tant qu ’indice de la peroxydation, la concentration de la malondialdéhyde (MDA) a été déterminée. En outre, on a procédé à des examens à la résonance paramagnétique électronique (Electronic spin resonance: ESR) et à la microscopie électronique (EM).


L’activité de la superoxyde dismutase (1168,3 ±78,2 U · mg−1) et de la glutathione peroxydase (14,9 ± 6,2 UI · mg−1) a diminué, mais celle de la catalase (1260,0 ± 250,6 Ul · mg−1) ainsi que la concentration de ta malondialdéhyde (11,5 ± 1,8 ppb) ont augmenté dans le tissus hépatique exposé à l’halothane comparativement aux valeurs de contrôle (1382,2 ± 91,8U · mg−1 pour SOD, 27,8 ± 5.2 mUI · mg−1 pour SGH-px, 840 ± 252,4 UI · mg−1 pour CAT et 10,0 ± 1,0 ppb pour MDA). La résonance paramagnétique a révélé un pic de radical CF3CHCl dans les tissus exposés. La microscopie électronique a montré des changements ultrastructuraux dans les cellules hépatiques chez les deux groupes halothane traités ou non à la vitamine E.


L’halothane provoque une altération du système de défense hépatique antioxydant et accélère les réactions de peroxydation. Il en résulte des changements ultrastructuraux des tissus hépatiques produits par l’exposition à l’halothane. Bien qu’elle prévienne le dommage peroxydatif, la vitamine E n’atténue pas les changements ultrastucturaux produits par l’exposition à l’halothane. Ceci montre que la toxicité à l’halothane résulte non seulement de l’altération du système de défense antioxydant mais aussi d’autres causes non déterminées.


  1. 1.
    Stock JGL, Strunin L. Unexplained hepatitis following halothane. Anesthesiology 1985; 63: 424–39.PubMedCrossRefGoogle Scholar
  2. 2.
    Hughes HC, Lang CM. Hepatic necrosis produced by repeated administration of halothane to guinea pigs. Anesthesiology 1972; 36: 466–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Inman WHW, Mushin WW. Jaundice after repeated exposure to halothane: an analysis of reports to the Committee on Safety of Medicines. BMJ 1974; 1: 5–10.PubMedGoogle Scholar
  4. 4.
    Inman WHW, Mushin WW. Jaundice after repeated exposure to halothane: a further analysis of reports to the Committee on Safety of Medicines. BMJ 1978; 2: 1455–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Moult PJA, Sherlock S. Halothane-related hepatitis. QJM 1975; 44: 99–114.PubMedGoogle Scholar
  6. 6.
    Lunam CA, Cousins MJ, Hall P de La M. Guinea-pig model of halothane-associated hepatotoxicity in the absence of enzyme induction and hypoxia. J Pharmacol ExpTher 1985; 232: 802–9.Google Scholar
  7. 7.
    Lunam CA, Hall P de La M, Cousins MJ. The pathology of halothane hepatotoxicity in a guinea-pig model: a comparison with human halothane hepatitis. British Journal of Experimental Pathology 1989; 70: 533–41.PubMedGoogle Scholar
  8. 8.
    Lind RC, Gandolfi AJ, Hall P de la M. The role of oxidative biotransformation of halothane in the guinea pig model of halothane-associated hepatotoxicity. Anesthesiology 1989; 70: 649–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Kenna JG, Satoh H, Christ DD, Pohl LR. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J Pharmacol Exp Ther 1988; 245: 1103–9.PubMedGoogle Scholar
  10. 10.
    De Groot H, Noll T. Halothane hepatotoxicity: relation between metabolic activation, hypoxia, covalent binding, lipid peroxidation and liver cell damage. Hepatology 1983; 3: 601–6.PubMedGoogle Scholar
  11. 11.
    Gandolfi AJ, Sipes IG, Brown BR Jr. Detection of covalently bound halothane metabolites in the hypoxic rat model for halothane hepatotoxicity. Fundam Appl Toxicol 1981; 1: 255–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Plummer JL, Beckwith ALJ, Bastin FN, Adams JF, Cousins MJ, Hall P. Free radical formationin vivo and hepatotoxicity due to anesthesia with halothane. Anesthesiology 1982; 57: 160–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Lind RC, Gandolfi AJ, Sipes IG, Brown BR Jr, Waters SJ. Oxygen concentrations required for reductive defluorination of halothane by rat hepatic microsomes. Anesth Analg 1986; 65: 835–9.PubMedGoogle Scholar
  14. 14.
    McLain GE, Sipes IG, Brown BR Jr. An animal model of halothane hepatotoxicity: roles of enzyme induction and hypoxia. Anesthesiology 1979; 51: 321–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Dyke RA. Hepatic centrilobular necrosis in rats after exposure to halothane, enflurane or isoflurane. Anesth Analg 1982; 61: 812–9.PubMedGoogle Scholar
  16. 16.
    Siegers CP, Frühling A, Younes M. Halothane hepatotoxicity in hyperthyroid rats as compared to the phenobarbitalhypoxia model. Toxicol Appl Pharmacol 1983; 69: 257–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Ramsammy LS, Josepovitz C, Ling K-Y, Lane BP, Kaloyanides GJ. Failure of inhibition of lipid peroxidation by vitamin E to protect against gentamicin nephrotoxicity in the rat. Biochemical Pharmacology 1987; 36: 2125–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Y-M, Madanat FF, Kimball JC et al. Effect of vitamin E against adriamycin-induced toxicity in rabbits. Cancer Res 1980; 40: 1022–7.PubMedGoogle Scholar
  19. 19.
    Kappus H, Diplock AT. Tolerance and safety of vitamin E. A toxicological position report. VERIS, the Vitamin E Research & Information Service. LaGrange, Illinois: 1991.Google Scholar
  20. 20.
    Lowry O, Rosenbrough N, Farr L, Rondall R. Protein measurement with the the folin phenol reagent. J Biol Chem 1951; 183: 265–75.Google Scholar
  21. 21.
    Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158–69.PubMedGoogle Scholar
  22. 22.
    Sun Y, Oberley LW, Li Y. A simple method for clinical assay of Superoxide dismutase. Clin Chem 1988; 34: 479–500.Google Scholar
  23. 23.
    Durak I, Canbolat O, Kavutçu M, Öztürk HS, Yurtarslany Z. Activities of total, cytoplasmic, and mitochondrial Superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. Journal of Clinical Laboratory Analysis 1996; 10: 17–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Aebi H. Catalase.In: Bergmeyer HU (Ed.). Methods of Enzymatic Analysis. New York and London: Academic Press Inc. 1974: 673.Google Scholar
  25. 25.
    Dahle LK, Hill EG, Holman RT. The thiobarbituric acid reaction and the autooxidations of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys 1962 98: 253–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Lontz RJ. Electron spin resonance analysis of a γ-irradiated single crystal of pentafluoropropionamide. Journal of Chemical Physics 1966; 45: 1339.CrossRefGoogle Scholar
  27. 27.
    Rogers MT, Kispert LD. Trifluoromethyl, and other radicals, in irradiated single crystals of trifluoroacetamide. Journal of Chemical Physics 1967; 46: 3193–9.CrossRefGoogle Scholar
  28. 28.
    Gut J, Christen U, Huwyler J. Mechanisms of halothane toxicity: novel insights. Pharmacol Ther 1993; 58: 133–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Cousins MJ, Gourlay GK, Knights KM, Hall P de la M, Lunam CA, O’Brien P. A randomised prospective controlled study of the metabolism and hepatotoxicity of halothane in humans. Anesth Analg 1987; 66: 299–308.PubMedGoogle Scholar
  30. 30.
    Sharp JH, Trudell JR, Cohen EN. Volatile metabolites and decomposition products of halothane in man. Anesthesiology 1979; 50: 2–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Royston D. Free radicals. Formation, function and potential relevance in anaesthesia. Anaesthesia 1988; 43: 315–20.PubMedGoogle Scholar
  32. 32.
    Sipes IG, Gandolfi AJ, Pohl LR, Krishna G, Brown BR Jr. Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. J Pharmacol Exp Ther 1980; 214: 716–20.PubMedGoogle Scholar
  33. 33.
    Lind RC, Gandolfi AJ, Hall P de la M. Covalent binding of oxidative biotransformation intermediates is associated with halothane hepatotoxicity in guinea pigs. Anesthesiology 1990; 73: 1208–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Shingu K, Eger EI II, Johnson BH, et al. Hepatic injury induced by anesthetic agents in rats. Anesth Analg 1983; 62: 140–5.PubMedGoogle Scholar
  35. 35.
    Cousins MJ, Sharp JH, Gourlay GK, Adams JF, Haynes WD, Whitehead R. Hepatotoxicity and halothane metabolism in an animal model with application for human toxicity. Anesth Intensive Care 1979; 7: 9–24.Google Scholar
  36. 36.
    Jee RC, Sipes IG, Gandolfi AJ, Brown BR Jr. Factors influencing halothane hepatotoxicity in the rat hypoxic model. Toxicol Appl Pharmacol 1980; 52: 267–77.PubMedCrossRefGoogle Scholar
  37. 37.
    Lind RC, Gandolfi AJ, Sipes IG, Brown BR Jr. Comparison of the requirements for hepatic injury with halothane and enflurane in rats. Anesth Analg 1985; 64: 955–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Ross WT Jr, Daggy BP, Cardeil RR Jr. Hepatic necrosis caused by halothane and hypoxia in phenobarbital treated rats. Anesthesiology 1979; 51: 327–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Copin J-C, Ledig M, Tholey G. Almitrine prevents some hypoxia-induced metabolic injury in rat astrocytes. Mol Chem Neuropathol 1993; 20: 97–109.PubMedGoogle Scholar
  40. 40.
    Kirshenbaum LA, Singal PK. Antioxidant changes in heart hypertrophy: significance during hypoxia-reoxygenation injury. Can J Physiol Pharmacol 1992; 70: 1330–5.PubMedGoogle Scholar
  41. 41.
    Kirshenbaum LA, Singal PK. Changes in antioxidant enzymes in isolated cardiac myocytes subjected to hypoxia-reoxygenation. Lab Invest 1992, 67: 796–803.PubMedGoogle Scholar
  42. 42.
    Sato N, Fujii K, Yuge O, Tanaka A, Morio M. Suppressive effect of vitamin E on lipid peroxidation in halothaneadministrated guinea pig liver. In Vivo 1992; 6: 503–5.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1996

Authors and Affiliations

  • I. Durak
    • 1
  • T. Güven
    • 2
  • M. Birey
    • 2
  • H. S. Öztürk
    • 1
  • Ö. Kurtipek
    • 3
  • M. Yel
    • 4
  • B. Dikmen
    • 3
  • O. Canbolat
    • 1
  • M. Kavutcu
    • 1
  • M. Kaçmaz
    • 1
  1. 1.Biyokimya A.B.D (Dekanlik Binasy)Ankara UniversitesiSihhiyeTürkíye
  2. 2.Departments of Biology and PhysicsAnkara UniversityAnkaraTurkey
  3. 3.Anaesthesiology Clinics of Ibn-i SinaNumune HospitalsAnkaraTurkey
  4. 4.Department of BiologyGazi UniversityAnkaraTurkey

Personalised recommendations