Canadian Journal of Anaesthesia

, Volume 50, Issue 2, pp 172–178 | Cite as

Magnesium potentiates neuromuscular blockade with cisatracurium during cardiac surgery

  • Anne Marie PinardEmail author
  • François Donati
  • Raymond Martineau
  • André Y. Denault
  • Jean Taillefer
  • Michel Carrier
Cardiothoracic Anesthesia, Respiration and Airway



Magnesium potentiates the effect of nondepoiarizing neuromuscular blocking agents. It is used in cardiac anesthesia to prevent hypertension and arrhythmias. This study was performed to measure the interaction between magnesium and cisatracurium in cardiac surgery.


Twenty patients scheduled for elective cardiac surgery were randomly assigned to receive magnesium sulfate (70 mg· kg−1 at induction followed by 30 mg· kg−1· hr−1) or placebo. The ulnar nerve was stimulated and the electromyographic response of the adductor pollicis was measured, Cisatracurium 0.1 mg· kg−1 was given at induction, followed by 0.05 mg· kg−1 when the first twitch in the train-of-four reached 25%.


Ionized magnesium was 1.32 ± 0.24 mmol· L−1 in the treatment group vs 0.47 ± 0.4 mmol· L−1 in the control group. Duration of action of the intubating dose was longer in the magnesium group (74 ± 20 min) than in the placebo group (42 ± 6 min,P = 0,0001), Duration of the first maintenance dose was 69 ± 16 min in the magnesium group vs 35 ± 7 min in the placebo group (P = 0,0001), Total dose of cisatracurium administered throughout surgery was 0.19 ± 0.07 mg· kg−1 in the magnesium group compared with 0.29 ± 0.01 mg· kg−1 in the placebo group (P = 0.017). Hemodynamic variables and temperature were similar in both groups.


In patients undergoing cardiac surgery, administration of magnesium sulfate, resulting in ionized levels of 1.3 mmol· L−1, results in a 30–35 min prolongation of the neuromuscular blockade induced with intubating and maintenance doses of cisatracurium and does not alter hemodynamic stability.


Neuromuscular Blockade Magnesium Sulfate Magnesium Sulphate Mivacurium Cisatracurium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Le magnésium potentialise le blocage neuromusculaire réalisé avec du cisatracurium en cardiochirurgie



Le magnésium est utilisé en clinique pour traiter les arythmies et prévenir l’hypertension. Le but de cette étude est de mesurer l’interaction entre Se cisatracurium et le magnésium en chirurgie cardiaque.


Vingt patients devant subir une intervention cardiaque programmée ont été randomisés pour recevoir du sulfate de magnésium (70 mg· kg−1 à l’induction puis 30 mg· kg−1· h−1) ou un placebo. Le nerf ulnaire était stimulé et la réponse électromyographique du muscle adducteur du pouce était enregistrée. Pour l’intubation, 0,1 mg· kg−1 de cisatracurium était utilisé et les doses suivantes de 0,05 mg· kg−1 ont été administrées lorsque Tl atteignait 25%.


Le magnésium ionisé était de 1,32 ± 0,24 mmol· L−1 dans le groupe traité vs 0,47 ± 0,4 mmol· L−1 dans le groupe placebo. La durée d’action des doses d’intubation et de maintien dans le groupe traité au magnésium (74 ± 20 min et 69 ± 16) était plus longue que dans le groupe placebo (42 ± 6 et 35 ± 7, P = 0,0001). Les variables hémodynamiques et la température sont restés similaires dans les deux groupes. La quantité de cisatracurium administrée durant l’opération était moins grande dans le groupe ayant reçu du magnésium comparé au placebo (0,19 ± 0,07 mg· kg−1 vs 0,29 ± 0,01 mg· kg−1, P = 0,017).


Chez des patients subissant une intervention cardiaque, une magnésémie de 1,3 mmol· L−1 produit peu de changements hémodynamiques mais augmente la durée du bloc neuromusculaire produit par le cisatracurium d’environ 30–35 min.


  1. 1.
    Peck CH, Meltzer SJ. Anesthesia in human beings by intravenous injection of magnesium sulfate. JAMA 1916; 67: 1131–3.Google Scholar
  2. 2.
    Delhumeau A, Granry JC, Monrigal JP, Costerousse F. Therapeutic use of magnesium in anaesthesia and intensive care (French). Ann Fr Anesth Reanim 1995; 14: 406–16.PubMedGoogle Scholar
  3. 3.
    Fawcett WJ, Haxby EJ, Male DA. Magnesium: physiology and pharmacology. Br J Anaesth 1999; 83: 302–20.PubMedGoogle Scholar
  4. 4.
    Gomez MN. Magnesium and cardiovascular disease. Anesthesiology 1998; 89: 222–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Idama TO, Lindow SW. Magnesium sulphate: a review of clinical pharmacology applied to obstetrics. Br J Obstet Gynaecol 1998; 105: 260–8.PubMedGoogle Scholar
  6. 6.
    James MFM. Clinical use of magnesium infusions in anesthesia. Anesth Analg 1992; 74: 129–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Witlin AG, Sibai BM. Magnesium sulfate therapy in preeclampsia and eclampsia. Obstet Gynecol 1998; 92: 883–9.PubMedCrossRefGoogle Scholar
  8. 8.
    England MR, Gordon G, Salem M, Chernow B. Magnesium administration and dysrhythmias after cardiac surgery. A placebo-controlled, double-blind, randomized trial. JAMA 1992; 268: 2395–402.PubMedCrossRefGoogle Scholar
  9. 9.
    Horner SM. Magnesium and arrhythmias in acute myocardial infarction. Coron Artery Dis 1996; 7: 359–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Giesecke AH Jr, Morris RE, Dalton MD, Stephen CR. Of magnesium, muscle relaxants, toxemic parturients, and cats. Anesth Analg 1968; 47: 689–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Ahn EK, Bai SJ, Cho BJ, Shin YS. The infusion rate of mivacurium and its spontaneous neuromuscular recovery in magnesium-treated parturients. Anesth Analg 1998; 86: 523–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Euchs-Buder T, Wilder-Smith OHG, Borgeat A, Tassonyi E. Interaction of magnesium sulphate with vecuronium-induced neuromuscular block. Br J Anaesth 1995; 74: 405–9.CrossRefGoogle Scholar
  13. 13.
    Fuchs-Buder T, Tassonyi E. Magnesium sulphate enhances residual neuromuscular block induced by vecuronium. Br J Anaesth 1996; 76: 565–6.PubMedGoogle Scholar
  14. 14.
    Fuchs-Buder T, Ziegenfub T, Lysakowski K, Tassonyi E. Antagonism of vecuronium-induced neuromuscular block in patients pretreated with magnesium sulphate: dose-effect relationship of neostigmine. Br J Anaesth 1999; 82: 61–5.PubMedGoogle Scholar
  15. 15.
    Ghoneim MM, Long JP. The interaction between magnesium and other neuromuscular blocking agents. Anesthesiology 1970; 32: 23–7.PubMedCrossRefGoogle Scholar
  16. 16.
    James MEM, Schenk PA, Van Der Veen BW. Priming of pancuronium with magnesium. Br J Anaesth 1991; 66: 247–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Kussman B, Shorten G, Uppington J, Comunale ME. Administration of magnesium sulphate before rocuroniurn: effects on speed of onset and duration of neuromuscular block. Br J Anaesth 1997; 79: 122–4.PubMedGoogle Scholar
  18. 18.
    Stacey MRW, Barclay K, Asai T, Vaughan RS. Effects of magnesium sulphate on suxamethonium-induced complications during rapid-sequence induction of anaesthesia. Anaesthesia 1995; 50: 933–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Searle NR, Thomson I, Dupont C, et al. A two-center study evaluating the hemodynamic and pharmacodynamic effects of cisatracurium and vecuronium in patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth 1999; 13: 20–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Feldman S, Karalliedde L. Drug interactions with neuromuscular blockers. Drug Saf 1996; 15: 261–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Buzello W, Pollmaecher T, Schluermann D, Urbanyi B. The influence of hypothermie cardiopulmonary bypass on neuromuscular transmission in the absence of muscle relaxants. Anesthesiology 1986; 64: 279–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Cammu G, Coddens J, Hendrickx J, Deloof T. Dose requirements of infusions of cisatracurium or rocuronium during hypothermic cardiopulmonary bypass. Br J Anaesth 2000; 84: 587–90.PubMedGoogle Scholar
  23. 23.
    Kisor DF, Schmith VD. Clinical pharmacokinetics of cisatracurium besilate. Clin Pharmacokinet 1999; 36: 27–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Del Castillo J, Engbaek L. The nature of the neuromuscular block produced by magnesium. J Physiol 1954; 124: 370–84.Google Scholar
  25. 25.
    Altura BM, Altura BT. Role of magnesium in pathophysiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest 1996; 56 (Suppl 224): 211–34.CrossRefGoogle Scholar
  26. 26.
    Somjen GG, Baskerville EN. Effect of excess magnesium on vagal inhibition and acetylcholine sensitivity of the mammalian heart in situ and in vitro. Nature 1968; 217: 679–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Altura BM, Altura BT. Magnesium and vascular tone and reactivity. Blood Vessels 1978; 15: 5–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Atura BM, Altura, BT, Carella A, Gebrewold A, Murakawa T, Nishio A. Mg2+-Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol 1987; 65: 729–45.Google Scholar

Copyright information

© Canadian Anesthesiologists 2003

Authors and Affiliations

  • Anne Marie Pinard
    • 1
    Email author
  • François Donati
    • 2
  • Raymond Martineau
    • 3
  • André Y. Denault
    • 3
  • Jean Taillefer
    • 3
  • Michel Carrier
    • 4
  1. 1.Department of AnesthesiologyMaisonneuve-Rosemont HospitalMontrealCanada
  2. 2.Department of AnesthesiologyUniversity of MontrealCanada
  3. 3.Department of AnesthesiologyMontreal Heart InstituteMontrealCanada
  4. 4.Department of SurgeryMontreal Heart InstituteMontrealCanada

Personalised recommendations