Canadian Journal of Anesthesia

, Volume 49, Issue 8, pp 777–791 | Cite as

Myocardial protection by anesthetic agents against ischemia-reperfusion injury: An update for anesthesiologists

General Anesthesia

Abstract

Purpose

The aim of this review of the literature was to evaluate the effectiveness of anesthetics in protecting the heart against myocardial ischemia-reperfusion injury.

Source

Articles were obtained from the Medline database (1980-, search terms included heart, myocardium, coronary, ischemia, reperfusion injury, infarction, stunning, halothane, enflurane, desflurane, isoflurane, sevoflurane, opioid, morphine, fentanyl, alfentanil sufentanil, pentazocine, buprenorphine, barbiturate, thiopental, ketamine, propofol, preconditioning, neutrophil adhesion, free radical, antioxidant and calcium).

Principal findings

Protection by volatile anesthetics, morphine and propofol is relatively well investigated. It is generally agreed that these agents reduce the myocardial damage caused by ischemia and reperfusion. Other anesthetics which are often used in clinical practice, such as fentanyl, ketamine, barbiturates and benzodiazepines have been much less studied, and their potential as cardioprotectors is currently unknown. There are some proposed mechanisms for protection by anesthetic agents: ischemic preconditioning-like effect, interference in the neutrophil/platelet-endothelium interaction, blockade of Ca2+ overload to the cytosolic space and antioxidant-like effect. Different anesthetics appear to have different mechanisms by which protection is exerted. Clinical applicability of anesthetic agent-induced protection has yet to be explored.

Conclusion

There is increasing evidence of anesthetic agentinduced protection. At present, isoflurane, sevoflurane and morphine appear to be most promising as preconditioning-inducing agents. After the onset of ischemia, propofol could be selected to reduce ischemia-reperfusion injury. Future clinical application depends on the full elucidation of the underlying mechanisms and on clinical outcome trials.

La protection myocardique contre les lésions d’ischémie-reperfusion par des anesthésiques: Une mise à jour pour les anesthésiologistes

Résumé

Objectif

Évaluer l’efficacité des anesthésiques dans la protection du cœur contre les lésions myocardiques d’ischémie-reperfusion.

Source

Des articles ont été obtenus de la base de données Medline (1980-, les mots clefs étant heart, myocardium, coronary, ischemia, reperfusion injury, infarction, stunning, halothane, enflurane, desflurane, isoflurane, sevoflurane, opioid, morphine, fentanyl, alfentanil sufentanil, pentazocine, buprenorphine, barbiturate, thiopental, ketamine, propofol, preconditioning, neutrophil adhesion, free radical, antioxidant et calcium).

Constatations principales

La protection par des anesthésiques volatils, morphine et propofol, est relativement bien explorée. On s’accorde généralement pour dire que ces agents réduisent les lésions myocardiques causées par l’ischémie et la reperfusion. D’autres anesthésiques utilisés souvent en clinique, comme le fentanyl, la kétamine, les barbituriques et les benzodiazépines, ont été moins étudiés et leur potentiel cardioprotecteur est actuellement inconnu. On propose certains mécanismes de protection par les anesthésiques: un effet qui s’apparente à un préconditionnement, une interférence dans l’interaction entre polynucléaires neutrophiles/plaquettes-endothélium, un blocage de la surcharge de Ca2+ à l’espace cytosolique et un effet du genre antioxydant. Différents anesthésiques semblent présenter des mécanismes différents par lesquels la protection s’exerce. L’applicabilité de la protection induite par les agents anesthésiques est encore à étudier.

Conclusion

Il y a de plus en plus d’évidence de la protection induite par les anesthésiques. Présentement, l’isoflurane, le sévoflurane et la morphine semblent les agents inducteurs de préconditionnement les plus prometteurs. Après le début de l’ischémie, le propofol peut être choisi pour réduire les lésions d’ischémie-reperfusion. L’application clinique future repose sur la mise en lumière complète des mécanismes sous-jacents et sur des essais relatifs aux avantages cliniques.

References

  1. 1.
    Freedman BM, Hamm DP, Everson CT, Wechsler AS, Christian CM II. Enflurane enhances postischemic functional recovery in the isolated rat heart. Anesthesiology 1985; 62: 29–33.PubMedGoogle Scholar
  2. 2.
    Schultz JEJ, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 1995; 268: H2157–61.PubMedGoogle Scholar
  3. 3.
    Schultz JEJ, Hsu AK, Gross GJ. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res 1996; 78: 1100–4.PubMedGoogle Scholar
  4. 4.
    Murphy PG, Myers DS, Davies MJ, Webster NR, Jones JG. The antioxidant potential of propofol (2,6-diisopropylphenol). Br J Anaesth 1992; 68: 613–8.PubMedGoogle Scholar
  5. 5.
    Kahraman S, Demiryurek AT. Propofol is a peroxynitrite scavenger. Anesth Analg 1997; 84: 1127–9.PubMedGoogle Scholar
  6. 6.
    Ko SH, Yu CW, Lee SK, et al. Propofol attenuates ischemia-reperfusion injury in the isolated rat heart. Anesth Analg 1997; 85: 719–24.PubMedGoogle Scholar
  7. 7.
    Kokita N, Hara A, Abiko Y, Arakawa J, Hashizume H, Namiki A. Propofol improves functional and metabolic recovery in ischemic reperfused isolated rat hearts. Anesth Analg 1998; 86: 252–8.PubMedGoogle Scholar
  8. 8.
    Mathur S, Farhangkhgoee P, Karmazyn M. Cardioprotective effects of propofol and sevoflurane in ischemic and reperfused rat hearts. Role of KATP channels and interaction with the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Anesthesiology 1999; 91: 1349–60.PubMedGoogle Scholar
  9. 9.
    Javadov SA, Lim KHH, Kerr PM, Suleiman MS, Angelini GD, Halestrap AP. Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res 2000; 45: 360–9.PubMedGoogle Scholar
  10. 10.
    Yoo KY, Yang SY, Lee J, et al. Intracoronary propofol attenuates myocardial but not coronary endothelial dysfunction after brief ischaemia and reperfusion in dogs. Br J Anaesth 1999; 82: 90–6.PubMedGoogle Scholar
  11. 11.
    Ross S, Foex P. Protective effects of anaesthetics in reversible and irreversible ischaemia-reperfusion injury. Br J Anaesth 1999; 82: 622–32.PubMedGoogle Scholar
  12. 12.
    Dickersin K, Scherer R, Lefebvre C. Identifying relevant studies for systematic reviews.In: Chalmers I, Altman DG (Eds.). Systematic Reviews. London: BMJ Publishing Group, 1995: 17–36.Google Scholar
  13. 13.
    Opie LH. Cell death: myocardial infarction.In: Opie LH (Ed.). The Heart. Physiology, from Cell to Circulation, 3rd ed. Philadelphia: Lippincott-Raven Publishers, 1998: 543–61.Google Scholar
  14. 14.
    Opie LH. Myocardial reperfusion: new ischemic syndromes.In: Opie LH (Ed.). The Heart. Physiology, from Cell to Circulation, 3rd ed. Philadelphia: Lippincott-Ravens Publishers, 1998: 563–88.Google Scholar
  15. 15.
    Opie LH. Oxygen lack: ischemia and angina.In: Opie LH (Ed.). The Heart. Physiology, from Cell to Circulation, 3rd ed. Philadelphia: Lippincott-Ravens Publishers, 1998: 515–41.Google Scholar
  16. 16.
    Maxwell SRJ, Lip GYH. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997; 58: 95–117.PubMedGoogle Scholar
  17. 17.
    Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 1999; 43: 860–78.PubMedGoogle Scholar
  18. 18.
    Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79: 609–34.PubMedGoogle Scholar
  19. 19.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146–9.PubMedGoogle Scholar
  20. 20.
    Okubo S, Xi L, Bernardo NL, Yoshida K, Kukreja RC. Myocardial preconditioning: basic concepts and potential mechanisms. Mol Cell Biochem 1999; 196: 3–12.PubMedGoogle Scholar
  21. 21.
    Nakano A, Cohen MV, Downey JM. Ischemic preconditioning. From basic mechanisms to clinical applications. Pharmacol Ther 2000; 86: 263–75.PubMedGoogle Scholar
  22. 22.
    Rubino A, Yellon DM. Ischaemic preconditioning of the vasculature: an overlooked phenomenon for protecting the heart? Trends Pharmacol Sci 2000; 21: 225–30.PubMedGoogle Scholar
  23. 23.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–36.PubMedGoogle Scholar
  24. 24.
    Tomai F, Crea F, Chiariello L, Gioffre PA. Ischemic preconditioning in humans. Models, mediators, and clinical relevance. Circulation 1999; 100: 559–63.PubMedGoogle Scholar
  25. 25.
    Lu EX, Chen SX, Hu TH, Xui LM, Yuan MD. Preconditioning enhances myocardial protection in patients undergoing open heart surgery. Thorac Cardiovasc Surg 1998; 46: 28–32.PubMedGoogle Scholar
  26. 26.
    Li G, Chen S, Lu E, Li Y. Ischemic preconditioning improves preservation with cold blood cardioplegia in valve replacement patients. Eur J Cardiothorac Surg 1999; 15: 653–7.PubMedGoogle Scholar
  27. 27.
    Szmagala P, Morawski W, Krejca M, Gburek T, Bochenek A. Evaluation of perioperative myocardial tissue damage in ischemically preconditioned human heart during aorto coronary bypass surgery. J Cardiovasc Surg (Torino) 1998; 39: 791–5.Google Scholar
  28. 28.
    Warltier DC, Al Wathiqui MH, Kampine JP, Schmeling WT. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology 1988; 69: 552–65.PubMedGoogle Scholar
  29. 29.
    Cason BA, Gamperl AK, Slocum RE, Hickey RF. Anesthetic-induced preconditioning. Previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology 1997; 87: 1182–90.PubMedGoogle Scholar
  30. 30.
    Cope DK, Impastato WK, Cohen MV, Downey JM. Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology 1997; 86: 699–709.PubMedGoogle Scholar
  31. 31.
    Kersten JR, Schmeling TJ, Pagel PS, Gross GJ, Warltier DC. Isoflurane mimics ischemic preconditioning via activation of KATP channels. Reduction of myocardial infarct size with an acute memory phase. Anesthesiology 1997; 87: 361–70.PubMedGoogle Scholar
  32. 32.
    Kowalski C, Zahler S, Becker BF, et al. Halothane, isoflurane, and sevoflurane reduce postischemic adhesion of neutrophils in the coronary system. Anesthesiology 1997; 86: 188–95.PubMedGoogle Scholar
  33. 33.
    Lochner A, Genade S, Tromp E, Theron S, Trollip G. Postcardioplegic myocardial recovery: effects of halothane, nifedipine, HOE 694, and quinacrine. Cardiovasc Drugs Ther 1998; 12: 267–77.PubMedGoogle Scholar
  34. 34.
    Preckel B, Schlack W, Comfere T, Obal D, Barthel H, Thamer V. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br J Anaesth 1998; 81: 905–12.PubMedGoogle Scholar
  35. 35.
    Preckel B, Schlack W, Thamer V. Enflurane and isoflurane, but not halothane, protect against myocardial reperfusion injury after cardioplegic arrest with HTK solution in the isolated rat heart. Anesth Analg 1998; 87: 1221–7.PubMedGoogle Scholar
  36. 36.
    Schlack W, Preckel B, Stunneck D, Thamer V. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth 1998; 81: 913–9.PubMedGoogle Scholar
  37. 37.
    Heindl B, Reichle FM, Zahler S, Conzen PF, Becker BF. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology 1999; 91: 521–30.PubMedGoogle Scholar
  38. 38.
    Ismaeil MS, Tkachenko I, Gamperl AK, Hickey RF, Cason BA. Mechanisms of isoflurane-induced myocardial preconditioning in rabbits. Anesthesiology 1999; 90: 812–21.PubMedGoogle Scholar
  39. 39.
    Piriou V, Chiari P, Knezynski S, et al. Prevention of isoflurane-induced preconditioning by 5-hydroxyde-canoate and gadolinium. Possible involvement of mitochondrial adenosine triphosphate-sensitive potassium and stretch-activated channels. Anesthesiology 2000; 93: 756–64.PubMedGoogle Scholar
  40. 40.
    Shimizu J, Sakamoto A, Ogawa R. Activation of the adenosine triphosphate sensitive mitochondrial potassium channel is involved in the cardioprotective effect of isoflurane. J Nippon Med Sch 2001; 68: 238–45.PubMedGoogle Scholar
  41. 41.
    Toller WG, Kersten JR, Gross ER, Pagel PS, Warltier DC. Isoflurane preconditions myocardium against infarction via activation of inhibitory guanine nucleotide binding proteins. Anesthesiology 2000; 92: 1400–7.PubMedGoogle Scholar
  42. 42.
    Toller WG, Montgomery MW, Pagel PS, Hettrick DA, Warltier DC, Kersten JR. Isoflurane-enhanced recovery of canine stunned myocardium. Role for protein kinase C? Anesthesiology 1999; 91: 713–22.PubMedGoogle Scholar
  43. 43.
    Coetzee JF, le Roux PJ, Genade S, Lochner A. Reduction of postischemic contractile dysfunction of the isolated rat heart by sevoflurane: comparison with halothane. Anesth Analg 2000; 90: 1089–97.PubMedGoogle Scholar
  44. 44.
    Roscoe AK, Christensen JD, Lynch C IIl. Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels. Anesthesiology 2000; 92: 1692–701.PubMedGoogle Scholar
  45. 45.
    Heindl B, Becker BF, Zahler S, Conzen PF. Volatile anaesthetics reduce adhesion of blood platelets under low-flow conditions in the coronary system of isolated guinea pig hearts. Acta Anaesthesiol Scand 1998; 42: 995–1003.PubMedGoogle Scholar
  46. 46.
    Novalija E, Stowe DF. Prior preconditioning by ischemia or sevoflurane improves cardiac work per oxygen use in isolated guinea pig hearts after global ischemia. Adv Exp Med Biol 1998; 454: 533–42.PubMedGoogle Scholar
  47. 47.
    Heindl B, Conzen PF, Becker BF. The volatile anesthetic sevoflurane mitigates cardiodepressive effects of platelets in reperfused hearts. Basic Res Cardiol 1999; 94: 102–11.PubMedGoogle Scholar
  48. 48.
    Novalija E, Fujita S, Kampine JP, Stowe DF. Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts. Anesthesiology 1999; 91: 701–12.PubMedGoogle Scholar
  49. 49.
    Preckel B, Thamer V, Schlack W. Beneficial effects of sevoflurane and desflurane against myocardial reperfusion injury after cardioplegic arrest. Can J Anesth 1999; 46: 1076–81.PubMedGoogle Scholar
  50. 50.
    Toller WG, Kersten JR, Pagel PS, Hettrick DA, Warltier DC. Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Anesthesiology 1999; 91: 1437–46.PubMedGoogle Scholar
  51. 51.
    Toller WG, Gross ER, Kersten JR, Pagel PS, Gross GJ, Warltier DC. Sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium channels. Mechanism of desflurane-induced cardioprotection. Anesthesiology 2000; 92: 1731–9.PubMedGoogle Scholar
  52. 52.
    Kissin I, Stanbridge R, Bishop SP, Reves JG. Effect of halothane on myocardial infarct size in rats. Can Anaesth Soc J 1981; 28: 239–43.PubMedGoogle Scholar
  53. 53.
    Davis RF, Sidi A. Effect of isoflurane on the extent of myocardial necrosis and on systemic hemodynamics, regional myocardial blood flow, and regional myocardial metabolism in dogs after coronary artery occlusion. Anesth Analg 1989; 69: 575–86.PubMedGoogle Scholar
  54. 54.
    Davis RF, DeBoer LWV, Rude RE, Lowenstein E, Maroko PR. The effect of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional myocardial blood flow in dogs following coronary artery occlusion. Anesthesiology 1983; 59: 402–11.PubMedGoogle Scholar
  55. 55.
    Schlack W, Hollmann M, Stunneck J, Thamer V. Effect of halothane on myocardial reoxygenation injury in the isolated rat heart. Br J Anaesth 1996; 76: 860–7.PubMedGoogle Scholar
  56. 56.
    Yao L, Kato R, Foex P. Isoflurane-induced protection against myocardial stunning is independent of adenosine 1 (A1) receptor in isolated rat heart. Br J Anaesth 2001; 87: 258–65.PubMedGoogle Scholar
  57. 57.
    Mobert J, Zahler S, Becker BF, Conzen PF. Inhibition of neutrophil activation by volatile anesthetics decreases adhesion to cultured human endothelial cells. Anesthesiology 1999; 90: 1372–81.PubMedGoogle Scholar
  58. 58.
    Kersten JR, Schmeling T, Tessmer J, Hettrick DA, Pagel PS, Warltier DC. Sevoflurane selectively increases coronary collateral blood flow independent of KATP channels in vivo. Anesthesiology 1999; 90: 246–56.PubMedGoogle Scholar
  59. 59.
    Mayfield KP, D’Alecy LG. Role of endogenous opioid peptides in the acute adaptation to hypoxia. Brain Res 1992; 582: 226–31.PubMedGoogle Scholar
  60. 60.
    Mayfield KP, D’Alecy LG. Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther 1994; 268: 683–8.PubMedGoogle Scholar
  61. 61.
    Chien S, Oeltgen PR, Diana JN, Salley RK, Su TP. Extension of tissue survival time in multiorgan block preparation with a delta opioid DADLE ([D-Ala2, D-Leu5]-enkephalin) Letter. J Thorac Cardiovasc Surg 1994; 107: 964–7.PubMedGoogle Scholar
  62. 62.
    Miki T, Cohen MV, Downey JM. Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. Mol Cell Biochem 1998; 186: 3–12.PubMedGoogle Scholar
  63. 63.
    Liang BT, Gross GJ. Direct preconditioning of cardiac myocytes via opioid receptors and KATP channels. Circ Res 1999; 84: 1396–400.PubMedGoogle Scholar
  64. 64.
    Takasaki Y, Wolff RA, Chien GL, Van Winkle DM. Met5-enkephalin protects isolated adult rabbit cardiomyocytes via δ-opioid receptors. Am J Physiol 1999; 277: H2442–50.PubMedGoogle Scholar
  65. 65.
    Benedict PE, Benedict MB, Su TP, Bolling SF. Opiate drugs and δ-receptor-mediated myocardial protection. Circulation 1999; 100(Suppl II): II-357-60.Google Scholar
  66. 66.
    Kato R, Ross S, Foex P. Fentanyl protects the heart against ischaemic injury via opioid receptors, adenosine A1 receptors and KATP channel linked mechanisms in rats. Br J Anaesth 2000; 84: 204–14.PubMedGoogle Scholar
  67. 67.
    Kato R, Foex P. Fentanyl reduces infarction but not stunning via δ-opioid receptors and protein kinase C in rats. Br J Anaesth 2000; 84: 608–14.PubMedGoogle Scholar
  68. 68.
    Schwartz CF, Georges AJ, Gallagher MA, Yu L, Kilgore KS, Bolling SF. Delta opioid receptors and low temperature myocardial protection. Ann Thorac Surg 1999; 68: 2089–92.PubMedGoogle Scholar
  69. 69.
    Bolling SF, Su TP, Childs KF, et al. The use of hibernation induction triggers for cardiac transplant preservation. Transplantation 1997; 63: 326–9.PubMedGoogle Scholar
  70. 70.
    Kevelaitis E, Peynet J, Mouas C, Launay JM, Menasche P. Opening of potassium channels. The common cardioprotective link between preconditioning and natural hibernation? Circulation 1999; 99: 3079–85.PubMedGoogle Scholar
  71. 71.
    Tsuchida A, Miura T, Tanno M, Nozawa Y, Kita H, Shimamoto K. Time window for the contribution of the δ-opioid receptor to cardioprotection by ischemic preconditioning in the rat heart. Cardiovasc Drugs Ther 1998; 12: 365–73.PubMedGoogle Scholar
  72. 72.
    Schultz JEJ, Hsu AK, Gross GJ. Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart. J Mol Cell Cardiol 1997; 29: 1355–62.PubMedGoogle Scholar
  73. 73.
    Chien GL, Mohtadi K, Wolff RA, Van Winkle DM. Naloxone blockade of myocardial ischemic preconditioning does not require central nervous system participation. Basic Res Cardiol 1999; 94: 136–43.PubMedGoogle Scholar
  74. 74.
    Schultz JEJ, Gross GJ. Opioids and cardioprotection. Pharmacol Ther 2001; 89: 123–37.PubMedGoogle Scholar
  75. 75.
    Aitchison KA, Baxter GF, Awan MM, Smith RM, Yellon DM, Opie LH. Opposing effects on infarction of delta and kappa opioid receptor activation in the isolated rat heart: implications for ischemic preconditioning. Bas Res Cardiol 2000; 95: 1–10; discussion 1.Google Scholar
  76. 76.
    Bell SP, Sack MN, Patel A, Opie LH, Yellon DM. Delta opioid receptor stimulation mimics ischemic preconditioning in human heart muscle. J Am Coll Cardiol 2000; 36: 2296–302.PubMedGoogle Scholar
  77. 77.
    Tomai F, Crea F, Gaspardone A, et al. Effects of naloxone on myocardial ischemic preconditioning in humans. J Am Coll Cardiol 1999; 33: 1863–9.PubMedGoogle Scholar
  78. 78.
    Schultz JEJ, Hsu AK, Gross GJ. Ischemic preconditioning and morphine-induced cardioprotection involve the delta (δ)-opioid receptor in the intact rat heart. J Mol Cell Cardiol 1997; 29: 2187–95.PubMedGoogle Scholar
  79. 79.
    Schultz JEJ, Hsu AK, Gross GJ. Ischemic preconditioning in the intact rat heart is mediated by δ1- but not μ- or κ-opioid receptors. Circulation 1998; 97: 1282–9.PubMedGoogle Scholar
  80. 80.
    Jaffe JH, Martin WR. Opioid analgesics and antagonists.In: Goodman Gilman A, Rall TW, Nies AS, Taylor P (Eds.). The Pharmacological Basis of Therapeutics, 8th ed. New York: Pergamon Press, 1990: 485–521.Google Scholar
  81. 81.
    Schultz JEJ, Hsu AK, Nagase H, Gross GJ. TAN-67, a δ1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol 1998; 274: H909–14.Google Scholar
  82. 82.
    Fryer RM, Hsu AK, Eells JT, Nagase H, Gross GJ. Opioid-induced second window of cardioprotection. Potential role of mitochondrial KATP channels. Circ Res 1999; 84: 846–51.PubMedGoogle Scholar
  83. 83.
    McPherson BC, Yao Z. Signal transduction of opioidinduced cardioprotection in ischemia-reperfusion. Anesthesiology 2001; 94: 1082–8.PubMedGoogle Scholar
  84. 84.
    Bolling SF, Tramontini NL, Kilgore KS, Su TP, Oeltgen PR, Harlow HH. Use of “natural” hibernation induction triggers for myocardial protection. Ann Thorac Surg 1997; 64: 623–7.PubMedGoogle Scholar
  85. 85.
    Huh J, Gross GJ, Nagase H, Liang BT. Protection of cardiac myocytes via δ1-opioid receptors, protein kinase C, and mitochondrial KATP channels. Am J Physiol 2001; 280: H377–83.Google Scholar
  86. 86.
    Wang GY, Wu S, Pei JM, Yu XC, Wong TM. κ- but not δ-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am J Physiol 2001; 280: H384–91.Google Scholar
  87. 87.
    Fryer RM, Pratt PF, Hsu AK, Gross GJ. Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 2001; 296: 642–9.PubMedGoogle Scholar
  88. 88.
    Wu S, Li HY, Wong TM. Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Involvement of κ-opioid receptor. Circ Res 1999; 84: 1388–95.PubMedGoogle Scholar
  89. 89.
    Zhou JJ, Pei JM, Wang GY, et al. Inducible HSP70 mediates delayed cardioprotection via U-50488H pretreatment in rat ventricular myocytes. Am J Physiol 2001; 281: H40–7.Google Scholar
  90. 90.
    Wang TL, Chang H, Hung CR, Tseng YZ. Attenuation of neutrophil and endothelial activation by intravenous morphine in patients with acute myocardial infarction. Am J Cardiol 1997; 80: 1532–5.PubMedGoogle Scholar
  91. 91.
    Wang TL, Chang H, Hung CR, Tseng YZ. Morphine preconditioning attenuates neutrophil activation in rat models of myocardial infarction. Cardiovasc Res 1998; 40: 557–63.PubMedGoogle Scholar
  92. 92.
    Hofbauer R, Frass M, Gmeiner B, et al. Effects of remifentanil on neutrophil adhesion, transmigration, and intercellular adhesion molecule expression. Acta Anaesthesiol Scand 2000; 44: 1232–7.PubMedGoogle Scholar
  93. 93.
    Szekely A, Heindl B, Zahler S, Conzen PF, Becker BF. Nonuniform behavior of intravenous anesthetics on postischemic adhesion of neutrophils in the guinea pig heart. Anesth Analg 2000; 90: 1293–300.PubMedGoogle Scholar
  94. 94.
    Nakae Y, Fujita S, Namiki A. Propofol inhibits Ca2+ transients but not contraction in intact beating guinea pig hearts. Anesth Analg 2000; 90: 1286–92.PubMedGoogle Scholar
  95. 95.
    Buljubasic N, Marijic J, Berczi V, Supan DF, Kampine JP, Bosnjak ZJ. Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells. Anesthesiology 1996; 85: 1092–9.PubMedGoogle Scholar
  96. 96.
    Skoutelis A, Lianou P, Papageorgiou E, Kokkinis K, Alexopoulos K, Bassaris H. Effects of propofol and thiopentone on polymorphonuclear leukocyte functions in vitro. Acta Anaesthesiol Scand 1994; 38: 858–62.PubMedGoogle Scholar
  97. 97.
    Galley HF, Dubbels AM, Webster NR. The effect of midazolam and propofol on interleukin-8 from human polymorphonuclear leukocytes. Anesth Analg 1998; 86: 1289–93.PubMedGoogle Scholar
  98. 98.
    Mullenheim J, Frassdorf J, Preckel B, Thamer V, Schlack W. Ketamine, but not S(+)-ketamine, blocks ischemic preconditioning in rabbit hearts in vivo. Anesthesiology 2001; 94: 630–6.PubMedGoogle Scholar
  99. 99.
    Kudoh A, Matsuki A. Ketamine inhibits inositol 1,4,5-trisphosphate production depending on the extracellular Ca2+ concentration in neonatal rat cardiomyocytes. Anesth Analg 1999; 89: 1417–22.PubMedGoogle Scholar
  100. 100.
    Ko SH, Lee SK, Han YJ, et al. Blockade of myocardial ATP-sensitive potassium channels by ketamine. Anesthesiology 1997; 87: 68–74.PubMedGoogle Scholar
  101. 101.
    Tsutsumi Y, Oshita S, Kitahata H, Kuroda Y, Kawano T, Nakaya Y. Blockade of adenosine triphosphate-sensitive potassium channels by thiamylal in rat ventricular myocytes. Anesthesiology 2000; 92: 1154–9.PubMedGoogle Scholar
  102. 102.
    Conradie S, Coetzee A, Coetzee J. Anesthetic modulation of myocardial ischemia and reperfusion injury in pigs: comparison between halothane and sevoflurane. Can J Anesth 1999; 46: 71–81.PubMedGoogle Scholar
  103. 103.
    Haessler R, Kuzume K, Chien GL, Wolff RA, Davis RF, Van Winkle DM. Anaesthetics alter the magnitude of infarct limitation by ischaemic preconditioning. Cardiovasc Res 1994; 28: 1574–80.PubMedGoogle Scholar
  104. 104.
    Tamaki F, Oguchi T, Kashimoto S, Nonaka A, Kumazawa T. Effects of propofol on ischemia and reperfusion in the isolated rat heart compared with thiamylal. Jpn Heart J 2001; 42: 193–206.PubMedGoogle Scholar
  105. 105.
    Ross S, Munoz H, Piriou V, Ryder WA, Foex P. A comparison of the effects of fentanyl and propofol on left ventricular contractility during myocardial stunning. Acta Anaesthesiol Scand 1998; 42: 23–31.PubMedGoogle Scholar
  106. 106.
    Meissner A, Weber TP, Van Aken H, Zbieranek K, Rolf N. Recovery from myocardial stunning is faster with desflurane compared with propofol in chronically instrumented dogs. Anesth Analg 2000; 91: 1333–8.PubMedGoogle Scholar
  107. 107.
    Belhomme D, Peynet J, Louzy M, Launay JM, Kitakaze M, Menasche P. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 1999; 100(Suppl II): II-340-4.Google Scholar
  108. 108.
    Tomai F, De Paulis R, Penta de Peppo A, et al. Beneficial impact of isoflurane during coronary bypass surgery on troponin I release. G Ital Cardiol 1999; 29: 1007–14.PubMedGoogle Scholar
  109. 109.
    Penta de Peppo A, Polisca P, Tomai F, et al. Recovery of LV contractility in man is enhanced by preischemic administration of enflurane. Ann Thorac Surg 1999; 68: 112–8.Google Scholar
  110. 110.
    Chauvin M, Sandouk P, Scherrmann JM, Farinotti R, Strumza P, Duvaldestin P. Morphine pharmacokinetics in renal failure. Anesthesiology of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Acta Anaesthesiol Scand 1998; 42: 576–80.Google Scholar
  111. 111.
    Silvast M, Rosenberg P, Seppala T, Svartling N, Pitkanen M. Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Anesthesiology 1987; 66: 327–31.Google Scholar
  112. 112.
    Hull CJ. Pharmacokinetics and pharamacodynamics.In: Prys-Roberts C, Brown BRJ (Eds.). International Practice of Anaesthesia. Oxford: Butterworth-Heinemann, 1996: 1/13/1–1/17.Google Scholar
  113. 113.
    Sprigge JS, Wynands JE, Whalley DG, et al. Fentanyl infusion anesthesia for aortocoronary bypass surgery: plasma levels and hemodynamic response. Anesth Analg 1982; 61: 972–8.PubMedGoogle Scholar
  114. 114.
    Shafer A, Doze VA, Shafer SL, White PF. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 1988; 69: 348–56.PubMedGoogle Scholar
  115. 115.
    Ebel D, Schlack W, Comfere T, Preckel B, Thamer V. Effect of propofol on reperfusion injury after regional ischaemia in the isolated rat heart. Br J Anaesth 1999; 83: 903–8.PubMedGoogle Scholar
  116. 116.
    Szekely A, Heindl B, Zahler S, Conzen PF, Becker BF. S(+)-ketamine, but not R(−)-ketamine, reduces postischemic adherence of neutrophils in the coronary system of isolated guinea pig hearts. Anesth Analg 1999; 88: 1017–24.PubMedGoogle Scholar
  117. 117.
    Idvall J, Ahlgren I, Aronsen KF, Stenberg P. Ketamine infusions: pharmacokinetics and clinical effects. Br J Anaesth 1979; 51: 1167–73.PubMedGoogle Scholar
  118. 118.
    Li F, Hayes JK, Wong KC, Szakacs J. Administration of sevoflurane and isoflurane prior to prolonged global ischemia improves heart function in isolated rat heart. Acta Anaesthesiol Sinica 2000; 38: 113–21.Google Scholar
  119. 119.
    Komai H, Berkoff HA, Rusy BF. Protection of ischemic rat heart by cardioplegic doses of pentobarbital. J Surg Res 1981; 30: 42–6.PubMedGoogle Scholar
  120. 120.
    Ruigrok TJC, Slade AM, van der Meer P, et al. Different effects of thiopental in severe hypoxia, total ischemia, and low-flow ischemia in rat heart muscle. Anesthesiology 1985; 63: 172–8.PubMedGoogle Scholar
  121. 121.
    Preuss KC, Gross GJ, Brooks HL, Warltier DC. Time course of recovery of “stunned” myocardium following variable periods of ischemia in conscious and anesthetized dogs. Am Heart J 1987; 114: 696–703.PubMedGoogle Scholar
  122. 122.
    Sinclair DM, de Moes D, Boink AB, Ruigrok TJ. A protective effect of thiopentone on hypoxic heart muscle. J Mol Cell Cardiol 1980; 12: 225–7.PubMedGoogle Scholar
  123. 123.
    Kanaya N, Zakhary DR, Murray PA, Damron DS. Differential effects of fentanyl and morphine on intracellular Ca2+ transients and contraction in rat ventricular myocytes. Anesthesiology 1998; 89: 1532–42.PubMedGoogle Scholar
  124. 124.
    Ela C, Barg J, Vogel Z, Hasin Y, Eilam Y. Distinct components of morphine effects on cardiac myocytes are mediated by the κ and δ opioid receptors. J Mol Cell Cardiol 1997; 29: 711–20.PubMedGoogle Scholar
  125. 125.
    Kanesaki T, Saeki M, Ooi Y, et al. Morphine prevents peroxynitrite-induced death of human neuroblastoma SH-SY5Y cells through a direct scavenging action. Eur J Pharmacol 1999; 372: 319–24.PubMedGoogle Scholar
  126. 126.
    Kang MY, Tsuchiya M, Packer L, Manabe M. In vitro study on antioxidant potential of various drugs used in the perioperative period. Acta Anaesthesiol Scand 1998; 42: 4–12.PubMedGoogle Scholar
  127. 127.
    Weigand MA, Schmidt H, Zhao Q, Plaschke K, Martin E, Bardenheuer HJ. Ketamine modulates the stimulated adhesion molecule expression on human neutrophils in vitro. Anesth Analg 2000; 90: 206–12.PubMedGoogle Scholar
  128. 128.
    Kanaya N, Murray PA, Damron DS. Propofol and ketamine only inhibit intracellular Ca2+ transients and contraction in rat ventricular myocytes at supraclinical concentrations. Anesthesiology 1998; 88: 781–91.PubMedGoogle Scholar
  129. 129.
    Kunst G, Martin E, Graf BM, Hagl S, Vahl CF. Actions of ketamine and its isomers on contractility and calcium transients in human myocardium. Anesthesiology 1999; 90: 1363–71.PubMedGoogle Scholar
  130. 130.
    Nishina K, Akamatsu H, Mikawa K, et al. The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth Analg 1998; 86: 159–65.PubMedGoogle Scholar
  131. 131.
    Sakai F, Hiraoka M, Amaha K. Comparative actions of propofol and thiopentone on cell membranes of isolated guineapig ventricular myocytes. Br J Anaesth 1996; 77: 508–16.PubMedGoogle Scholar
  132. 132.
    Martynyuk AE, Morey TE, Raatikainen MJP, Seubert CN, Dennis DM. Ionic mechanisms mediating the differential effects of methohexital and thiopental on action potential duration in guinea pig and rabbit isolated ventricular myocytes. Anesthesiology 1999; 90: 156–64.PubMedGoogle Scholar
  133. 133.
    Almaas R, Saugstad OD, Pleasure D, Rootwelt T. Effect of barbiturates on hydroxyl radicals, lipid peroxidation, and hypoxic cell death in human NT2-N neurons. Anesthesiology 2000; 92: 764–74.PubMedGoogle Scholar
  134. 134.
    Nonaka A, Kashimoto S, Imamura M, Furuya A, Kumazawa T. Mechanism of the negative inotropic effect of midazolam and diazepam in cultured foetal mouse cardiac myocytes. Eur J Anaesthesiol 1997; 14: 481–7.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2002

Authors and Affiliations

  1. 1.Department of Anesthesiology (B1), Graduate School of MedicineChiba UniversityChibaJapan
  2. 2.Nuffield Department of AnaestheticsUniversity of OxfordOxfordUK

Personalised recommendations