Canadian Journal of Anesthesia

, Volume 49, Issue 9, pp 918–921 | Cite as

Systolic blood pressure, not BIS, is associated with movement during laryngoscopy and intubation

  • Velislav Slavov
  • Cyrus Motamed
  • Nicole Massou
  • Yves Rebufat
  • Philippe Duvaldestin
General Anesthesia

Abstract

Objective

Tb compare bispectral index (BIS) values to hemodynamic variations, in order to evaluate adequacy of anesthesia during orotracheal intubation with muscle relaxants.

Methods

Forty-one patients ASA I–II, scheduled for elective peripheral surgery under general anesthesia with tracheal intubation were enrolled in the study. Fentanyl/thiopental followed by vecuronium were used for induction. Onset of relaxation was monitored at the orbicularis occuli (OO) muscle using train-of-four stimulation. Intubation was performed when no response at the OO was detected visually. Intubating conditions were noted. The “isolated forearm” technique was used to detect movement during laryngoscopy/intubation. BIS values, pulse rate (PR), and systolic pressure were recorded before induction, during laryngoscopy/intubation and 60 sec after intubation.

Results

Although intubating conditions were clinically adequate for all patients, ten out of 41 had movement of the isolated arm during laryngoscopy/intubation. BIS values were not significantly different for these patients: 67 (55–83) compared to those who had no movement: 60 (35–80), P = 0.6. During laryngoscopy, PR increased for all patients while systolic pressure increased significantly only in patients who moved: 125 (100–136) mmHg vs those who did not: 108 (67–140), P < 0.05.

Conclusion

Systolic pressure elevations were associated with inadequate anesthesia as evaluated by the “isolated forearm” technique, during laryngoscopy/intubation. BIS values were not different between groups, suggesting that systolic blood pressure may be a better predictor of inadequate anesthesia under the circumstances described.

Contrairement au niveau du BIS, le niveau de pression artérielle systolique est associé aux mouvements lors de la laryngoscope et l’intubation

Résumé

Objectif

Évaluer l’analyse blspectrale (BIS) en la comparant avec les variations hémodynamiques lors de l’intubation orotrachéale avec curarisation.

Méthode

Quarante et un patients de classe ASA I–II admis pour une intervention chirurgicale périphérique programmée sous anesthésie générale avec intubation et curarisation ont été inclus dans l’étude. Linduction a été effectuée avec du fentanyl/thiopental suivi de vécuronium pour faciliter l’intubation. L’installation du bloc neuromusculaire a été contrôlée à l’orbiculaire de l’œil avec des stimulations en trainde-quatre. L’intubation a été réalisée à la disparition de la réponse observée de l’orbiculaire de l’œil et les conditions d’intubation ont été notées. La technique de l’avant-bras isolé avec un garrot a été utilisée pour détecter les mouvements lors des stimuli nociceptifs alors que les patients étaient curarisés. Les valeurs du BIS, la fréquence cardiaque, et la pression artérielle systolique ont été enregistrées: avant l’induction, lors de la laryngoscopie/intubation et 60 sec après l’intubation.

Résultats

Les conditions d’intubation étaient cliniquement satisfaisantes pour tous les patients. Dix patients sur 41 ont eu des mouvements de l’avant-bras durant la laryngoscope et/ou l’intubation. Les valeurs du BIS chez ces patients: 67 (55–83) n’étaient pas significativement différentes de celles des patients n’ayant pas bougé: 61 (39–80) P = 0,6. La fréquence cardiaque a augmenté chez tous les patients tandis que la pression artérielle systolique était significativement plus basse chez les patients qui n’ont pas bougé: 108 (67–140) mmHg contre: 125 (100–136), (P < 0,05).

Conclusion

Dans les conditions de cette étude, les variations de la pression artérielle systolique ont été plus significatives que les variations du BIS pour prédire les mouvements du bras isolé lors de l’intubation chez les patients curarisés.

References

  1. 1.
    Liu J, Singh H, White PF. Electroencephalographic bis-pectral index correlates with intraoperative recall and depth of propofol-induced sedation. Anesth Analg 1997; 84: 185–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Vernon JM, Lang E, Sebel PS, Manberg P. Prediction of movement using bispectral electroencephalographic analysis during propofol/alfentanil or isoflurane/alfentanil anesthesia. Anesth Analg 1995; 80: 780–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Kearse LA Jr, Manberg P, Chamoun N, deBros F, Zaslavsky A. Bispectral analysis of the electroencephalogram correlates with patient movement to skin incision during propofol/nitrous oxide anesthesia. Anesthesiology 1994; 81: 1365–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Billard V. Surveillance de la profondeur de l’anesthésie.In: Conférences d’Actualisation. 1997 Elsevier, Paris, et SFAR, 1997: 17–32.Google Scholar
  5. 5.
    Sleigh JW, Andrzejowski J, Steyn-Ross A, Steyn-Ross M. The bispectral index: a measure of depth of sleep? Anesth Analg 1999; 88: 659–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Drummond JC. Monitoring depth of anesthesia. With emphasis on the application of the bispectral index and the middle latency evoked response to the preventionof recall. Anesthesiology 2000; 93: 876–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Mollestad KE, Heier T, Steen PA, Raeder JC. 1 MAC-incision sevoflurane prevents explicit awareness during surgical skin incision and tracheal intubation. Acta Anaesthesiol Scand 1998; 42: 1184–7.PubMedGoogle Scholar
  8. 8.
    Schwender D, Daunderer M, Kunze-Kronawitter H, Klasing S, Poppel E, Peter K. Awareness during general anaesthesia-incidence, clinical relevance and monitoring. Acta Anaesthesiol Scand Suppl 1997; 111: 313–4.PubMedGoogle Scholar
  9. 9.
    Bogod DG, Orton JK, Yau HM, Oh TE. Detecting awareness during general anaesthetic caesarean section. An evaluation of two methods. Anaesthesia 1990; 45: 279–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Tunstall ME. Detecting wakefulness during general anaesthesia for caesarean section. Br Med J 1977; 21: 1321.Google Scholar
  11. 11.
    Hastings RH, Hon ED, Nghiem C, Wahrenbrock EA. Force and torque vary between laryngoscopists and laryngoscope blades. Anesth Analg 1996; 82: 462–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Viby-Mogensen J, Engbaek J, Eriksson LI, et al. Good clinical research practice (GCRP) in pharmacodynamic studies of neuromuscular blocking agents. Acta Anaesthesiol Scand 1996; 40: 59–74.PubMedGoogle Scholar
  13. 13.
    Leslie K, Sessler DL, Smith WD, et al. Prediction of movement during propofol/nitrous oxide anesthesia. Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators. Anesthesiology 1996; 84: 52–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Kearse LA Jr, Manberg P, DeBros F, Chamoun F, Sinai V. Bispectral analysis of the electroencephalogram during induction of anesthesia may predict hemodynamic responses to laryngoscopy and intubation. Electroencephalogr Clin Neurophysiol 1994; 90: 194–200.PubMedCrossRefGoogle Scholar
  15. 15.
    Glass PSA, Shafer SL, Jacobs JR, Reves JG. Intravenous drug delivery systems.In: Miller RD (Ed.). Anesthesia. New York: Churchill Livingstone, 1994: 389–14.Google Scholar
  16. 16.
    Guignard B, Menigaux C, Dupont X, Fletcher D, Chauvin M. The effect of remifentanil on the bispectral index change and hemodynamic responses after orotracheal intubation. Anesth Analg 2000; 90: 161–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Bruhn J, Bouillon TW, Shafer SL. Electromyographic activity falsely elevates the bispectral index. Anesthesiology 2000; 92: 1485–7.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2002

Authors and Affiliations

  • Velislav Slavov
    • 1
  • Cyrus Motamed
    • 1
  • Nicole Massou
    • 1
  • Yves Rebufat
    • 1
  • Philippe Duvaldestin
    • 1
  1. 1.Service d’anesthésie-réanimationHôpital Henri Mondor-AP-HP et Université Paris XIIFrance

Personalised recommendations