Canadian Journal of Anesthesia

, 48:784 | Cite as

Thiopentone does not block ischemic preconditioning in the isolated rat heart

  • J. Müllenheim
  • A. Molojavyi
  • B. Preckel
  • V. Thämer
  • W. Schlack
Cardiothoracic Anesthesia, Respiration and Airway

Abstract

Purpose

Ischemic preconditioning protects the heart against subsequent prolonged ischemia by opening of adenosine triphosphate-sensitive potassium (KATP) channels. Thiopentone blocks KATP channels in isolated cells. Therefore, we investigated the effects of thiopentone on ischemic preconditioning.

Methods

Isolated rat hearts (n = 56) were subjected to 30 min of global no-flow ischemia, followed by 60 min of reperfusion. Thirteen hearts underwent the protocol without intervention (control, CON) and in 11 hearts (preconditioning, PC), ischemic preconditioning was elicited by two five-minute periods of ischemia. In three additional groups, hearts received 1 (Thio 1,n = 11), 10(Thio 10,n = 11) or 100 μg·mL−1 (Thio 100,n = 10) thiopentone for five minutes before preconditioning. Left ventricular (LV) developed pressure and creatine kinase (CK) release were measured as variables of myocardial performance and cellular injury, respectively.

Results

Recovery of LV developed pressure was improved by ischemic preconditioning (after 60 min of reperfusion, mean ± SD: PC, 40 ± 19% of baseline) compared with the control group (5 ± 6%,P < 0.0l) and this improvement of myocardial function was not altered by administration of thiopentone (Thio 1, 37 ± 15%; Thio 10, 36 ± 16%; Thio 100, 38 ± 16%,P=0.87–0.99 vs PC). Total CK release over 60 min of reperfusion was reduced by preconditioning (PC, 202 ± 82 U·g−1 dry weight) compared with controls (CON, 383 ± 147 U·g−1,P < 0.0l) and this reduction was not affected by thiopentone (Thio 1, 213 ± 69 U·g−1; Thio 10, 211 ± 98U·g−1; Thio 100, 258 ± 128 U·g−1,P=0.62–1.0vs PC).

Conclusion

These results indicate that thiopentone does not block the cardioprotective effects of ischemic preconditioning in an isolated rat heart preparation.

Le thiopental n’entrave pas le préconditionnement ischémique dans le cœur de rat isolé

Résumé

Objectif

Le préconditionnement ischémique protège le cœur contre l’ischémie ultérieure prolongée en ouvrant les canaux potassiques sensibles à l’adénosine triphosphate (KATP). Or, le thiopental bloque les canaux KATP dans des cellules isolées. Nous avons donc recherché les effets du thiopental sur le préconditionnement ischémique.

Méthode

Des cœurs de rats isolés (n = 56) ont été soumis à 30 min d’ischémie globale à débit nul, puis de 60 min, à une reperfusion. Treize cœurs ont subi le protocole sans intervention (témoin, TEM) et dans onze cœurs (groupe de préconditionnement, PC) le préconditionnement ischémique a été amorcé par deux périodes de cinq minutes d’ischémie. Dans trois groupes additionnels, les cœurs ont reçu 1 (Thio 1, n = 11), 10 (Thio 10, n = 11) ou 100 μg·mL−1 (Thio 100, n = 10) de thiopental pendant cinq minutes avant le préconditionnement. La pression du ventricule gauche (VG) développée et la libération de créatine kinase (CK) ont été mesurées en qualité de variables de la performance myocardique et de la lésion cellulaire, respectivement.

Résultats

La récupération de la pression du VG développée a été améliorée par le préconditionnement ischémique (après 60 min de reperfusion, la moyenne ± l’écart type : PC, 40 ± 19 % de la mesure de base) comparée au groupe témoin (5 ± 6 %, P < 0,01). Cette amélioration de la fonction myocardique n’a pas été modifiée par l’administration de thiopental (Thio 1, 37 ± 15 %; Thio 10, 36 ± 16 %; Thio 100, 38 ± 16%, P = 0,87 - 0,99 vs PC). La libération totale de CK après 60 min de reperfusion a été réduite par le préconditionnement (PC, 202 ± 82 U·g−1 de poids anhydre) comparé au témoin (TEM, 383 ± 147 U·g−1, P < 0,01) et cette réduction n’a pas été affectée par le thiopental (Thio 1, 213 ± 69 U·g−1; Thio 10, 211 ± 98 U·g−1; Thio 100, 258 ± 128 U·g−1, P = 0,62– 1,0 vs PC).

Conclusion

Ces résultats indiquent que le thiopental ne bloque pas les effets cardioprotecteurs du préconditionnement ischémique dans une préparation de cœur de rat isolé.

References

  1. 1.
    Baxter GF. Ischaemic preconditioning of myocardium. Ann Med 1997; 29: 345–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Kloner RA, Shook T, Antman FM, et al. Prospective temporal analysis of the onset of preinfarction angina versus outcome. An ancillary study in TIMI-9B. Circulation 1998; 97: 1042–5.PubMedGoogle Scholar
  3. 3.
    Liu Y, Sato T, O’Rourke B, Marban E. Mitochondrial ATP-dependent potassium channels. Novel effectors of cardioprotection. Circulation 1998; 97: 2463–9.PubMedGoogle Scholar
  4. 4.
    Ko S-H, Lee S-K, Han Y-J, et al. Blockade of myocardial ATP-sensitive potassium channels by ketamine. Anesthesiology 1997; 87: 68–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Cason BA, Shubayev I, Hickey RF. Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation. Anesthesiology 1994; 81: 1245–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Molojavyi A, Preckel B, Comfère T, Müllenheim J, Thämer V, Schlack W. Effects of ketamine and its isomers on ischemic preconditioning in the isolated rat heart. Anesthesiology 2001; 94: 623–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Müllenheim J, Fräßdorf J, Preckel B, Thämer V, Schlack W. Ketamine, but not S(+)-ketamine blocks ischemic preconditioning in rabbit hearts in vivo. Anesthesiology 2001; 94: 630–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Ismaeil MS, Tkachenko I, Gamperl AK, Hickey RF, Cason BA. Mechanisms of isoflurane-induced myocardial preconditioning in rabbits. Anesthesiology 1999; 90: 812–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Kozlowski RZ, Ashford MLJ. Barbiturates inhibit ATPK+ channels and voltage-activated currents in CRIG1 insulin-secreting cells. Br J Pharmacol 1991; 103: 2021–9.PubMedGoogle Scholar
  10. 10.
    Tsutsumi Y, Oshita S, Kitahata H, Kuroda Y, Kawano T, Nakaya Y. Blockade of adenosine triphosphatesensitive potassium channels by thiamylal in rat ventricular myocytes. Anesthesiology 2000; 92: 1154–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Preckel B, Thämer V, Schlack W. Beneficial effects of sevoflurane and desflurane against myocardial reperfusion injury after cardioplegic arrest. Can J Anesth 1999; 46: 1076–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Arstall MA, Zhao Y-Z, Hornberger L, et al. Human ventricular myocytes in vitro exhibit both early and delayed preconditioning responses to simulated ischemia. J Mol Cell Cardiol 1998; 30: 1019–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Yao Z, Mizumura T, Mei DA, Gross GJ. KATP channels and memory of ischemic preconditioning in dogs: synergism between adenosine and KATP channels. Am J Physiol 1997; 272: H334–42.PubMedGoogle Scholar
  14. 14.
    Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 1999; 84: 973–9.PubMedGoogle Scholar
  15. 15.
    Inagaki N, Gonoi T, Clement IVJP, et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1996; 16: 1011–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–36.PubMedGoogle Scholar
  17. 17.
    Burch PG, Stanski DR. The role of metabolism and protein binding in thiopental anesthesia. Anesthesiology 1983; 58: 146–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW Jr, Herrmann HC, Laskey WK. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Circulation 1990; 82: 2044–51.PubMedGoogle Scholar
  19. 19.
    Roscoe AK, Christensen JD, Lynch IIIC. Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels. Anesthesiology 2000; 92: 1692–1701.PubMedCrossRefGoogle Scholar
  20. 20.
    Schultz JEJ, Hsu AK, Nagase H, Gross GJ. TAN-67, a d1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol 1998; 274: H909–14.Google Scholar

Copyright information

© Canadian Anesthesiologists 2001

Authors and Affiliations

  • J. Müllenheim
    • 1
  • A. Molojavyi
    • 2
  • B. Preckel
    • 1
  • V. Thämer
    • 2
  • W. Schlack
    • 1
  1. 1.Klinik für Anaesthesiologie Heinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.Department of Physiology, Institut IHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations