Canadian Journal of Anaesthesia

, Volume 54, Issue 12, pp 998–1005 | Cite as

MK-801 enhances gabaculine-induced loss of the righting reflex in mice, but not immobility

  • Masahiro IrifuneEmail author
  • Sohtaro Katayama
  • Tohru Takarada
  • Yoshitaka Shimizu
  • Chie Endo
  • Takashi Takata
  • Katsuya Morita
  • Toshihiro Dohi
  • Tomoaki Sato
  • Michio Kawahara
Reports Of Original Investigations


Purpose: γ-Aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptors are important targets for anesthetic action at thein vitro cellular level. Gabaculine is a GABA-transaminase inhibitor that increases endogenous GABA in the brain, and enhances GABA activity. We have recently shown that unconsciousness is associated with the enhanced GABA activity due to gabaculine, but that immobility is not. MK-801 is a selective NMDA channel blocker. In this study, we examined behaviourally whether gabaculine in combination with MK-801 could produce these components of the general anesthetic state. We further compared the effect of MK-801 with ketamine, another NMDA channel blocker.

Methods: All drugs were administered intraperitoneally to adult male ddY mice. To assess the general anesthetic components, two endpoints were used. One was loss of the righting reflex (LORR; as a measure of unconsciousness) and the other was loss of movement in response to tail-clamp stimulation (as a measure of immobility).

Results: Large doses of MK-801 alone (10–50 mg·kg−1) induced neither LORR nor immobility in response to noxious stimulation. However, even a small dose (0.2 mg·kg−1) significantly enhanced gabaculine-induced LORR (P<0.05), although gabaculine in combination with MK-801 (0.2–10 mg·kg−1) produced no immobility. However, gabaculine plus a subanesthetic dose of ketamine (30 mg·kg−1), which acts on NMDA, opioid and nicotinic acetylcholine receptors and neuronal Na+ channels, suppressed the pain response, but did not achieve a full effect. Ketamine alone dose-dependently produced both LORR and immobility.

Conclusion: These findings suggest that gabaculine-induced LORR is modulated by blocking NMDA receptors, but that immobility is not mediated through GABA or NMDA receptors.


NMDA Ketamine NMDA Receptor Minimum Alveolar Concentration Noxious Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Le MK-801 accentue la perte du réflexe de redressement provoqué par la gabaculine chez les souris, mais pas l’immobilité


Objectif: Les récepteurs GABA (acide gamma-aminobutyrique) et NMDA (N-méthyl-D-aspartate) constituent d’importantes cibles pour l’action des anesthésiques au niveau cellulaire in vitro. La ga-baculine est un inhibiteur des GABA-transaminases qui augmente le GABA endogène dans le cerveau, et stimule l’activité GABA. Nous avons récemment démontré que la perte de conscience est associée à l’activité GABA stimulée par la gabaculine, mais que l’immobilité ne l’est pas. Le MK-801 est un bloqueur sélectif du canal NMDA. Dans cette étude, nous avons examiné si la gabaculine combinée à du MK-801 pouvait produire ces composantes de l’état d’anesthésie générale au niveau comportemental. Nous avons également comparé l’effet du MK-801 à celui de la kétamine, un autre bloqueur du canal NMDA.

Méthode: Tous les médicaments ont été administrés à des souris mâles adultes ddY par voie intrapéritonéale. Deux paramètres ont été utilisés afin d’évaluer les composantes de l’anesthésie générale. L’un était la perte du réflexe de redressement (LORR — loss of righting reflex ; pour mesurer la perte de conscience), et l’autre l’absence de mouvement en réaction à la stimulation d’une pince à la queue (pour mesurer l’immobilité).

Résultats: D’importantes doses de MK-801 seul (10–50 mg·kg−1) n’ont provoqué ni LORR ni l’immobilité en réaction à une stimulation nociceptive. Toutefois, une dose même faible (0.2 mg·kg−1) a significativement accentué le LORR provoqué par la gabaculine (P<0,05), bien que la gabaculine associée à du MK-801 (0,2–10 mg·kg−1)n’ait pas provoqué d’immobilité. Cependant, la gabaculine additionnée d’une dose sous-anesthésique de kétamine (30 mg·kg−1),laquelle agit sur les récepteurs NMDA, opiacés et cholinergiques nicotiniques ainsi que sur les canaux Na+, a supprimé la réaction douloureuse, mais n’a pas eu un effet complet. La kétamine seule a provoqué LORR et immobilité, de façon dose-dépendante.

Conclusion: Ces résultats suggèrent que le LORR provoqué par la gabaculine est modulé en bloquant les récepteurs NMDA, mais que l’immobilité n’est pas médiée par les récepteurs GABA ou NMDA.


  1. 1.
    Evers AS, Crowder CM. General anesthetics.In: Hardman JG, Limbird LE, Gilman AG (Eds). Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill; 2001: 337–65.Google Scholar
  2. 2.
    Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367: 607–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Krasowski MD, Harrison NL. General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 1999; 55: 1278–303.PubMedCrossRefGoogle Scholar
  4. 4.
    Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79: 565–75.PubMedGoogle Scholar
  5. 5.
    Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen W, Olney JW, Zorumski CF. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 1998; 18: 9716–26.PubMedGoogle Scholar
  6. 6.
    Jevtovic-Todorovic V, Todorovic SM, Mennerick S, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 1998; 4: 460–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR. How does xenon produce anaesthesia? Nature 1998; 396: 324.PubMedCrossRefGoogle Scholar
  8. 8.
    de Sousa SL, Dickinson R, Lieb WR, Franks NP. Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 2000; 92: 1055–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Antognini JF, Carstens E. In vivo characterization of clinical anaesthesia and its components. Br J Anaesth 2002; 89: 156–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Sawamura S, Kingery WS, Davies MF, et al. Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of α2B adrenoceptors. J Neurosci 2000; 20: 9242–51.PubMedGoogle Scholar
  11. 11.
    Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5: 979–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Matsui Y, Deguchi T. Effects of gabaculine, a new potent inhibitor of gamma-amonobutyrate transaminase, on the brain gamma-amonobutyrate content and convulsions in mice. Life Sci 1977; 20: 1291–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Krantis A. Cerebral endothelial GABA-T activity: effects of in vivo GABA-T inhibition. Neurosci Lett 1986; 67: 48–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Katayama S, Irifune M, Kikuchi N, et al. Increased γ-aminobutyric acid levels in mouse brain induce loss of righting reflex, but not immobility, in response to noxious stimulation. Anesth Analg 2007; 104: 1422–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang Y, Sonner JM, Eger EI II,et al. Gamma-aminobutyric acidA receptors do not mediate the immobility produced by isoflurane. Anesth Analg 2004; 99: 85–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Foster AC. Channel blocking drugs for the NMDA receptor.In: Meldrum BS (Ed.). Excitatory Amino Acid Antagonists. Oxford: Blackwell Scientific Publications; 1991: 164–79.Google Scholar
  17. 17.
    Daniell LC. The noncompetitive N-methyl-D-aspartate antagonists, MK-801, phencyclidine and ketamine, increase the potency of general anesthetics. Pharmacol Biochem Behav 1990; 36: 111–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Stabernack C, Sonner JM, Laster M, et al. Spinal N-methyl-D-aspartate receptors may contribute to the immobilizing action of isoflurane. Anesth Analg 2003; 96: 102–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Kohrs R, Durieux ME. Ketamine: teaching an old drug new tricks. Anesth Analg 1998; 87: 1186–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Reckziegel G, Friederich P, Urban BW. Ketamine effects on human neuronal Na+ channels. Eur J Anaesthesiol 2002; 19: 634–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Irifune M, Sato T, Kamata Y, Nishikawa T, Dohi T, Kawahara M. Evidence for GABAA receptor agonistic properties of ketamine: convulsive and anesthetic behavioral models in mice. Anesth Analg 2000; 91: 230–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Irifune M, Takarada T, Shimizu Y, et al. Propofol-induced anesthesia in mice is mediated by γ-aminobutyric acid-A and excitatory amino acid receptors. Anesth Analg 2003; 97: 424–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Vezzani A, Serafini R, Stasi MA, et al. Kinetics of MK-801 and its effect on quinolinic acid-induced seizures and neurotoxicity in rats. J Pharmacol Exp Ther 1989; 249: 278–83.PubMedGoogle Scholar
  24. 24.
    Ryder S, Way WL, Trevor AJ. Comparative pharmacology of the optical isomers of ketamine in mice. Eur J Pharmacol 1978; 49: 15–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Litchfield JT J.,Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 1949; 96: 99–113.PubMedGoogle Scholar
  26. 26.
    Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78: 707–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 1993; 79: 1244–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Rampil IJ. Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 1994; 80: 606–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Pierard C, Peres M, Satabin P, Guezennec CY, Lagarde D. Effects of GABA-transaminase inhibition on brain metabolism and amino-acid compartmentation: an in vivo study by 2D1H-NMR spectroscopy coupled with microdialysis. Exp Brain Res 1999; 127: 321–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Guyton AC, Hall JE. Textbook of Medical Physiology, 9th ed. Philadelphia: W.B. Saunders Company; 1996: 783–9.Google Scholar
  31. 31.
    Rando RR, Bangerter FW, Farb DH. The inactivation of gamma-aminobutyric acid transaminase in dissociated neuronal cultures from spinal cord. J Neurochem 1981; 36: 985–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Gadotti VM, Tibola D, Paszcuk AF, Rodrigues AL, Calixto JB, Santos AR. Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice. Brain Res 2006; 1093: 116–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Liao M, Sonner JM, Jurd R, et al. β3-Containing gamma-aminobutyric acidA receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg 2005; 101: 412–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Eger EI II,Liao M, Laster MJ, et al. Contrasting roles of the N-methyl-D-aspartate receptor in the production of immobilization by conventional and aromatic anesthetics. Anesth Analg 2006; 102: 1397–406.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2007

Authors and Affiliations

  • Masahiro Irifune
    • 1
    Email author
  • Sohtaro Katayama
    • 1
  • Tohru Takarada
    • 1
  • Yoshitaka Shimizu
    • 1
  • Chie Endo
    • 1
  • Takashi Takata
    • 2
  • Katsuya Morita
    • 3
  • Toshihiro Dohi
    • 3
  • Tomoaki Sato
    • 4
  • Michio Kawahara
    • 1
  1. 1.Department of Dental Anesthesiology, Division of Clinical Medical Science, Programs for Applied BiomedicineGraduate School of Biomedical Sciences, Hiroshima UniversityHiroshimaJapan
  2. 2.the Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical ScienceGraduate School of Biomedical Sciences, Hiroshima UniversityHiroshimaJapan
  3. 3.the Department of Dental Pharmacology, Division of Integrated Medical Science, Programs for Biomedical ResearchGraduate School of Biomedical Sciences, Hiroshima UniversityHiroshimaJapan
  4. 4.the Department of Applied PharmacologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan

Personalised recommendations