Advertisement

Canadian Journal of Anesthesia

, Volume 55, Issue 2, pp 112–123 | Cite as

Transcranial Doppler monitoring in subarachnoid hemorrhage: a critical tool in critical care

  • Andrea RigamontiEmail author
  • Alun Ackery
  • Andrew J. Baker
Review Article/Brief Review

Abstract

Purpose: To review the literature regarding the use of transcranial Doppler ultrasonography (TCD) for monitoring cerebral vasospasm following subarachnoid hemorrhage (SAH).

Source: We searched Medline (1980 to August 2007) and Embase (1980 to August 2007) and reviewed all relevant manuscripts regarding TCD and SAH.

Principal findings: Currently, the gold standard for vasospasm diagnosis is cerebral angiography, replaceable by computed tomography angiography, only when angiography is not available. Obviously, it is not feasible to perform such investigation as frequently as bedside clinical assessment. Repeated clinical assessments of a patient’s neurological status carry the problem of detecting the clinical signs and symptoms of vasospasm, which occur only after vasospasm has already manifested its deleterious effects on the cerebral parenchyma. Transcranial Doppler ultrasonography is a relatively new, non-invasive tool, allowing for bedside monitoring to determine flow velocities indicative of changes in vascular calibre. Transcranial Doppler ultrasonography can be useful pre-, intra- and post-operatively, while helping to recognize the development of cerebral vasospasm before the onset of its clinical effects.

Conclusion: Vasospasm following SAH is a very important source of morbidity and mortality. Too often, the first sign is a neurologic deficit, which may be too late to reverse. Transcranial Doppler ultrasonography assists in the clinical decision-making regarding further diagnostic evaluation and therapeutic interventions. When performed in isolation, the contribution of TCD to improving patient outcome has not been established. Nevertheless, TCD has become a regularly employed tool in neurocritical care and perioperative settings.

Keywords

Compute Tomography Angiography Subarachnoid Hemorrhage Pulsatility Index Cerebral Vasospasm Symptomatic Vasospasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Monitorage par Doppler transcrânien lors d’une hémorragie sous-arachnoïdienne : un outil indispensable aux soins intensifs

Résumé

Objectif: Passer en revue la littérature concernant l’utilisation de l’échographie Doppler transcrânienne (TCD) pour surveiller un vasospasme cérébral survenu à la suite d’une hémorragie sous-arachnoïdienne (SAH).

Source: Nous avons effectué des recherches sur Medline (1980 à août 2007) et Embase (1980 à août 2007) et révisé tous les manuscrits pertinents concernant la TCD et la SAH.

Constatations principales: À l’heure actuelle, l’angiographie est l’étalon or pour diagnostiquer un vasospasme. Celle-ci peut être remplacée par l’angiographie par tomodensitométrie seulement lorsqu’une angiographie n’est pas disponible. Il est évident qu’il n’est pas possible d’effectuer de telles recherches aussi fréquemment que les évaluations cliniques au chevet du malade. Des évaluations cliniques répétées de l’état neurologique d’un patient donné ont pour objectif primaire la détection des signes et symptômes cliniques du vasospasme, lesquels ne surviennent qu’après que le vasospasme a manifesté ses effets nuisibles sur le parenchyme cérébral. L’échographie Doppler transcrânienne est un outil relativement nouveau et non invasif qui permet un monitorage au chevet du patient afin de déterminer les vitesses du débit qui indiquent les changements dans le calibre vasculaire. L’échographie Doppler transcrânienne peut être utile avant, pendant et après l’opération tout en constituant un outil précieux pour identifier le développement d’un vasospasme cérébral avant que ses effets cliniques ne se manifestent.

Conclusion: Le vasospasme à la suite d’une SAH est une cause majeure de morbidité et de mortalité. Trop souvent, le premier signe visible d’un vasospasme est un déficit neurologique, et il pourrait être trop tard déjà pour qu’il soit réversible. L’échographie Doppler transcrânienne est un outil qui assiste la prise de décision clinique concernant une évaluation diagnostique approfondie et des interventions thérapeutiques. Il n’a pas été démontré que la TCD, utilisée seule, améliore le suivi des patients. Cependant, la TCD est devenue un outil régulièrement employé dans des contextes de soins intensifs neurologiques et périopératoires.

References

  1. 1.
    Dorsch NW, King MT. A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage. Part I: Incidence and effects. J Clin Neurosci 1994; 1: 19–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Weir B, Grace M, Hansen J, Rothberg C. Time course of vasospasm in man. J Neurosurg 1978; 48: 173–8.PubMedGoogle Scholar
  3. 3.
    Sobey CG, Faraci FM. Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol 1998; 25: 867–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Woszczyk A, Deinsberger W, Boker DK. Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid haemorrhage. Acta Neurochir (Wien) 2003; 145: 257–64.CrossRefGoogle Scholar
  5. 5.
    Tani E, Matsumoto T. Continuous elevation of intracellular Ca2+ is essential for the development of cerebral vasospasm. Curr Vasc Pharmacol 2004; 2: 13–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol 1983; 14: 599–608.PubMedCrossRefGoogle Scholar
  7. 7.
    Kassell NF, Sasaki T, Colohan AR, Nazar G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 1985; 16: 562–72.PubMedGoogle Scholar
  8. 8.
    Mayberg M, Batjer HH, Dacey R, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 1994; 28: 2315–28.Google Scholar
  9. 9.
    Dorsch NW. A review of cerebral vasospasm in subarachnoid haemorrhage. Part II: Management. J Clin Neurosci 1994; 1: 78–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Krejza J, Kochanowicz J, Mariak Z, Lewko J, Melhem ER. Middle cerebral artery spasm after subarachnoid hemorrhage: detection with transcranial color-coded duplex US. Radiology 2005; 236: 621–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Medlock MD, Dulebohn SC, Elwood PW. Prophylactic hypervolemia without calcium channel blockers in early aneurysm surgery. Neurosurgery 1992; 30: 12–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimoda M, Oda S, Tsugane R, Sato O. Intracranial complications of hypervolemic therapy in patients with a delayed ischemic deficit attributed to vasospasm. J Neurosurg 1993; 78: 423–9.PubMedGoogle Scholar
  13. 13.
    Muench EM, Horn PM, Bauhuf CM, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med 2007; 35: 1844–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Treggiari MM, Walder B, Suter PM, Romand JA. Systematic review of the prevention of delayed ischemic neurological deficits with hypertension, hypervolemia, and hemodilution therapy following subarachnoid hemorrhage. J Neurosurg 2003; 98: 978–84.PubMedGoogle Scholar
  15. 15.
    Germanson TP, Lanzino G, Kongable GL, Torner JC, Kassell NF. Risk classification after aneurysmal subarachnoid hemorrhage. Surg Neurol 1998; 49: 155–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Springborg JB, Frederiksen HJ, Eskesen V, Olsen NV. Trends in monitoring patients with aneurysmal subarachnoid haemorrhage. Br J Anaesth 2005; 94: 259–70.PubMedCrossRefGoogle Scholar
  17. 17.
    White H, Venkatesh B. Applications of transcranial Doppler in the ICU: a review. Intensive Care Med 2006; 32: 981–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57: 769–74.PubMedGoogle Scholar
  19. 19.
    Aaslid R, Huber P, Nornes H. Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg 1984; 60: 37–41.PubMedCrossRefGoogle Scholar
  20. 20.
    van Gijn J, Rinkel GJ. Subarachnoid haemorrhage: diagnosis, causes and management. Brain 2001; 124: 249–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Willinsky RA, Taylor SM, terBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 2003; 227: 522–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Heiserman JE. MR angiography for the diagnosis of vasospasm after subarachnoid hemorrhage. Is it accurate? Is it safe? AJNR Am J Neuroradiol 2000; 21: 1571–2.PubMedGoogle Scholar
  23. 23.
    Jabre A, Babikian V, Powsner RA, Spatz EL. Role of single photon emission computed tomography and transcranial Doppler ultrasonography in clinical vasospasm. J Clin Neurosci 2002; 9: 400–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP. Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 2006; 27: 26–34.PubMedGoogle Scholar
  25. 25.
    Anderson GB, Ashforth R, Steinke DE, Findlay JM. CT angiography for the detection of cerebral vasospasm in patients with acute subarachnoid hemorrhage. AJNR Am J Neuroradiol 2000; 21: 1011–5.PubMedGoogle Scholar
  26. 26.
    Claassen J, Mayer SA. Continuous electroencephalographic monitoring in neurocritical care. Curr Neurol Neurosci Rep 2002; 2: 534–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Claassen J, Hirsch LJ, Kreiter KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol 2004; 115: 2699–710.PubMedCrossRefGoogle Scholar
  28. 28.
    Claassen J, Mayer SA, Hirsch LJ. Continuous EEG monitoring in patients with subarachnoid hemorrhage. J Clin Neurophysiol 2005; 22: 92–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Vespa PM, Nuwer MR, Juhasz C, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol 1997; 103: 607–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Charbel FT, Du X, Hoffman WE, Ausman JI. Brain tissue pO2, pCO2, and pH during cerebral vasospasm. Surg Neurol 2000; 54: 432–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Jabre A, Bao Y, Spatz EL. Brain pH monitoring during ischemia. Surg Neurol 2000; 54: 55–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Ekelund A, Kongstad P, Saveland H, et al. Transcranial cerebral oximetry related to transcranial Doppler after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 1998; 140: 1029–36.CrossRefGoogle Scholar
  33. 33.
    Bazzocchi M, Quaia E, Zuiani C, Moroldo M. Transcranial Doppler: state of the art. Eur J Radiol 1998; 27 Suppl 2: S141-S148.PubMedCrossRefGoogle Scholar
  34. 34.
    Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth 2004; 93: 710–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Krejza J, Mariak Z, Babikian VL. Importance of angle correction in the measurement of blood flow velocity with transcranial Doppler sonography. AJNR Am J Neuroradiol 2001; 22: 1743–7PubMedGoogle Scholar
  36. 36.
    Baumgartner RW, Mathis J, Sturzenegger M, Mattle HP. A validation study on the intraobserver reproducibility of transcranial color-coded duplex sonography velocity measurements. Ultrasound Med Biol 1994; 20: 233–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Krejza J, Mariak Z, Walecki J, Szydlik P, Lewko J, Ustymowicz A. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. Am J Roentgenol 1999; 172: 213–8.Google Scholar
  38. 38.
    Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 2004; 62: 45–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 1988; 42: 81–4.Google Scholar
  40. 40.
    Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard Index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke 2002; 33: 72–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Clyde BL, Resnick DK, Yonas HM, Smith HA, Kaufmann AM. The relationship of blood velocity as measured by transcranial Doppler ultrasonography to cerebral blood flow as determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage. Neurosurgery 1996; 38: 896–905.PubMedCrossRefGoogle Scholar
  42. 42.
    Romner B, Brandt L, Berntman L, Algotsson L, Ljunggren B, Messeter K. Simultaneous transcranial Doppler sonography and cerebral blood flow measurements of cerebrovascular CO2-reactivity in patients with aneurysmal subarachnoid haemorrhage. Br J Neurosurg 1991; 5: 31–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Minhas PS, Menon DK, Smielewski PP, et al. Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid hemorrhage. Neurosurgery 2003; 52: 1017–24.PubMedCrossRefGoogle Scholar
  44. 44.
    McGirt MJ, Blessing RP, Goldstein LB. Transcranial Doppler monitoring and clinical decision-making after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 2003; 12: 88–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Lowe LH, Bulas DI. Transcranial Doppler imaging in children: sickle cell screening and beyond. Pediatr Radiol 2005; 35: 54–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Martin PJ, Evans DH, Naylor AR. Transcranial color-coded sonography of the basal cerebral circulation. Reference data from 115 volunteers. Stroke 1994; 25: 390–6.PubMedGoogle Scholar
  47. 47.
    Sloan MA, Haley EC Jr,Kassell NF, et al. Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 1989; 39: 1514–8.PubMedGoogle Scholar
  48. 48.
    Sloan MA. Detection of vasospasm following subarachnoid hemorrage.In: Babikian VL (Ed.). Transcranial Doppler Ultrasonography. St. Louis. Mosby — Year Book, Inc.; 1993: 105–27.Google Scholar
  49. 49.
    Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM. Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1999; 44: 1237–48.PubMedCrossRefGoogle Scholar
  50. 50.
    Mascia L, Fedorko L, terBrugge K, et al. The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med 2003; 29: 1088–94.PubMedCrossRefGoogle Scholar
  51. 51.
    Proust F, Callonec F, Clavier E, et al. Usefulness of transcranial color-coded sonography in the diagnostis of cerebral vasospasm. Stroke 1999; 30: 1091–8.PubMedGoogle Scholar
  52. 52.
    Lysakowski C, Walder B, Costanza M, Tramer M. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke 2001; 32: 2292–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Ekelund A, Saveland H, Romner B, Brandt L. Is transcranial Doppler sonography useful in detecting late cerebral ischaemia after aneurysmal subarachnoid haemorrhage? Br J Neurosurg 1996; 10: 19–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Grosset DG, Straiton J, du Trevou M, Bullock R. Prediction of symptomatic vasospasm after subarachnoid hemorrhage by rapidly increasing transcranial Doppler velocity and cerebral blood flow changes. Stroke 1992; 23: 674–9.PubMedGoogle Scholar
  55. 55.
    Aaslid A, Huber P, Nornes H. A transcranial Doppler method in the evaluation of cerebrovascular spasm. Neuroradiology 1986; 28: 11–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Krejza J, Mariak Z, Lewko J. Standardization of flow velocities with respect to age and sex improves the accuracy of transcranial color Doppler sonography of middle cerebral artery spasm. AJR Am J Roentgenol 2003; 181: 245–52.PubMedGoogle Scholar
  57. 57.
    Mursch K, Wachter A, Radke K, et al. Blood flow velocities in the basal vein after subarachnoid haemorrhage. A prospective study using transcranial duplex sonography. Acta Neurochir (Wien) 2001; 143: 793–9.CrossRefGoogle Scholar
  58. 58.
    Soustiel JF, Bruk B, Shik B, Hadani M, Feinsod M. Transcranial Doppler in vertebrobasilar vasospasm after subarachnoid hemorrhage. Neurosurgery 1998; 43: 282–91; discussion 291–3.PubMedCrossRefGoogle Scholar
  59. 59.
    Goldsher D, Shreiber R, Shik V, Tavor Y, Soustiel JF. Role of multisection CT angiography in the evaluation of vertebrobasilar vasospasm in patients with subarachnoid hemorrhage. AJNR Am J Neuroradiol 2004; 25: 1493–8.PubMedGoogle Scholar
  60. 60.
    Soustiel JF, Shik V. Posttraumatic basilar artery vasospasm. Surg Neurol 2004; 62: 201–6; discussion 206.PubMedCrossRefGoogle Scholar
  61. 61.
    Soustiel JF, Shik V, Feinsod M. Basilar vasospasm following spontaneous and traumatic subarachnoid haemorrhage: clinical implications. Acta Neurochir (Wien) 2002; 144: 137–44.Google Scholar
  62. 62.
    Sviri GE, Lewis DH, Correa R, Britz GW, Douville CM, Newell DW. Basilar artery vasospasm and delayed posterior circulation ischemia after aneurysmal subarachnoid hemorrhage. Stroke 2004; 35: 1867–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Newell DW, Grady MS, Eskridge JM, Winn HR. Distribution of angiographic vasospasm after subarachnoid hemorrhage: implications for diagnosis by transcranial Doppler ultrasonography. Neurosurgery 1990; 27: 574–7.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2008

Authors and Affiliations

  • Andrea Rigamonti
    • 1
    • 2
    • 3
    • 5
    Email author
  • Alun Ackery
    • 5
  • Andrew J. Baker
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.From the Department of Anesthesiathe Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s HospitalCanada
  2. 2.Department of Critical Carethe Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s HospitalCanada
  3. 3.the Department of AnesthesiaUniversity of TorontoTorontoCanada
  4. 4.Department of SurgeryUniversity of TorontoTorontoCanada
  5. 5.Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations