Advertisement

Variational problems involving combined tensor fieds

Article

Keywords

Variational Problem Invariance Condition Energy Momentum Tensor Dependent Function Tensor Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. S. Eddington, The mathematical theory of relativity, 2nd ed., Cambridge (1954).Google Scholar
  2. [2]
    A. Einstein, Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitzber. Preuß. Akad. Wiss.1919, 349–355 (1919).Google Scholar
  3. [3]
    C. W. Misner andJ. A. Wheeler, Classical Physics as Geometry. Annals Phys.2, 525–603 (1957).zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Y. Rainich, Electrodynamics in the General Relativity Theory. Trans. Amer. Math. Soc.27, 106–130 (1925).zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    H. Rund, Variational problems in which the unknown functions are tensor components. Second Colloquium on the Calculus of Variations, 129–174, University of South Africa (1964).Google Scholar
  6. [6]
    E. Schrödinger, Space-time structure. Cambridge (1954).Google Scholar
  7. [7]
    H. Weyl, Raum-Zeit-Materie, 4. Aufl., Berlin (1921).Google Scholar
  8. [8]
    J. A. Wheeler, Geometrodynamics and the problem of motion. Rev. Mod. Phys.33, 63–78 (1961).zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. A. Wheeler, Geometrodynamics. Topics in Modern Physics, Vol. 1. New York (1962).Google Scholar

Copyright information

© Mathematische Seminar 1966

Authors and Affiliations

  • H. Rund
    • 1
  1. 1.Department of MathematicsUniversity of South AfricaPretoria

Personalised recommendations