Canadian Journal of Anaesthesia

, Volume 52, Issue 6, pp 581–590 | Cite as

Transfusion rates vary significantly amongst Canadian medical centres

  • Brian Hutton
  • Dean Fergusson
  • Alan Tinmouth
  • Lauralyn McIntyre
  • Andrew Kmetic
  • Paul C. Hébert
General Anesthesia

Abstract

Purpose

To document variation of transfusion practice following repair of hip fracture or cardiac surgery, as well as those requiring intensive care following a surgical intervention or multiple trauma (high risk patients).

Methods

We documented rates of allogeneic red cell transfusion in 41,568 patients admitted to 11 hospitals across Canada between August 1998 and August 2000 as part of a retrospective observational cohort study. In the subgroup of 7,552 patients receiving red cells, we also compared mean nadir hemoglobin concentrations from centre to centre.

Results

The overall rate of red cell transfusion was 38.7%, and ranged from 23.8% to 51.9% across centres among the 41,568 perioperative and critically ill patients. Women were more likely to be transfused (43.7%vs 35.3%,P < 0.0001), with higher rates of transfusion in eight of 11 centres. Compared to a chosen reference hospital having a crude transfusion rate near the median, the adjusted odds of transfusion ranged from 0.44 to 1.53 overall, from 0.42 to 1.22 in patients undergoing a hip fracture repair, from 0.72 to 3.17 in cardiac surgical patients undergoing cardiac surgery, and from 0.27 to 1.11 in critically ill and trauma patients. In the 7,552 transfused patients, the mean adjusted nadir hemoglobin was 74.0 ± 4.83 g·L-1 overall, and ranged from 66.9 ± 1.7 g·L-1 to 84.5 ± 1.6 g·L-1 across centres. Similar differences among centres were observed amongst hip fracture patients (71.2 ± 2.9 g·L-1 to 82.8 ± 1.7 g·L-1), cardiac surgical patients (65.7 ± 1.1 g·L-1 to 77.3 ± 1.0 g·L-1) and critically ill and trauma patients (66.1 ± 3.04 g·L-1 to 87.5 ± 2.5 g·L-1).

Conclusion

We noted significant differences in the rates of red cell transfusion and nadir hemoglobin concentrations in various surgical and critical care settings.

Les taux de transfusion varient de façon significative dans les centres médicaux canadiens

Résumé

Objectif

Documenter les variations dans la pratique des transfusions à la suite d’une réparation de fracture de la hanche ou d’une intervention chirurgicale cardiaque, de même que des transfusions chez des patients de soins intensifs à la suite d’une intervention chirurgicale ou d’un polytraumatisme (patients à haut risque).

Méthode

Nous avons vérifié les taux de transfusion allogéniques chez 41 568 patients admis dans 11 hôpitaux canadiens entre août 1998 et août 2000 dans le cadre d’une étude rétrospective de cohorte par observation. Dans le sous-groupe de 7 552 patients transfusés, nous avons aussi comparé la moyenne des concentrations d’hémoglobine minimales d’un centre à l’autre.

Résultats

Le taux global de transfusion de culots globulaires a été de 38,7 %, allant de 23,8 % à 51,9 % entre les centres parmi les 41 568 patients périopératoires et les grands malades. Les femmes étaient plus souvent transfusées (43,7 % vs 35,3 %,P < 0,0001), selon des taux plus élevés dans 8 centres sur 11. Comparées à celles d’un hôpital de référence choisi ayant un taux précis de transfusion près de la médiane, les probabilités de transfusion ajustées allaient de 0,44 à 1,53 globalement, de 0,42 à 1,22 chez les opérés à la hanche, de 0,72 à 3,17 chez les patients de cardiochirurgie et de 0,27 à 1,11 chez les grands malades et les polytraumatisés. Chez les 7 552 patients transfusés, la concentration minimale d’hémoglobine ajustée était de 74,0 ± 4,83 g·L-1 globalement et de 66,9 ± 1,7 g·L-1 à 84,5 ± 1,6 g·L-1 entre les centres. Des différences similaires ont été observées dans les centres parmi les patients avec fracture de la hanche (71,2 ± 2,9 g·L-1 à 82,8 ± 1,7 g·L-1), les patients de cardiochirurgie (65,7 ± 1,1 g·L-1 à 77,3 ± 1,0 g·L-1) et les grands malades et les polytraumatisés (66,1 ± 3,04 g·L-1 à 87,5 ± 2,5 g·L-1).

Conclusion

Les taux de transfusion de culots globulaires et les concentrations minimales d’hémoglobine diffèrent significativement en fonction de divers soins chirurgicaux et intensifs.

References

  1. 1.
    Carson JL, Duff A, Poses RM, et al. Effects of anaemia and cardiovascular disease on surgical mortality and morbidity. Lancet 1996; 348:1055–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Brien WF, Butler RJ, Inwood MJ. An audit of blood component therapy in a Canadian general teaching hospital. CMAJ 1989; 140:812–5.PubMedGoogle Scholar
  3. 3.
    Ghali WA, Palepu A, Paterson WG. Evaluation of red blood cell transfusion practices with the use of preset criteria. CMAJ 1994; 150:1449–54.PubMedGoogle Scholar
  4. 4.
    Hasley PB, Lave JR, Hanusa BH, et al. Variation in the use of red blood cell transfusions. A study of four common medical and surgical conditions. Med Care 1995; 33:1145–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Surgenor DM, Wallace EL, Churchill WH, Hao S, Hale WB, Schnitzer J. Utility of DRG and ICD-9-CM classification codes for study of transfusion issues. Transfusions in patients with digestive diseases. Transfusion 1989; 29:761–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Baele PL, De Bruyere M, Deneys V, et al. Results of the SANGUIS study in Belgium. A concerted action of the Commission of the European Communities IVth Medical and Health Research Programme. The Belgium SANGUIS Study Group. Safe AND Good Use of blood In Surgery. Acta Chir Belg 1994; 94(Suppl):1–61.PubMedGoogle Scholar
  7. 7.
    Mintz PD, Nordine RB, Henry JB, Webb WR. Expected hemotherapy in elective surgery. N Y State J Med 1976; 76:532–7.PubMedGoogle Scholar
  8. 8.
    Friedman BA. An analysis of surgical blood use in United States hospitals with application to the maximum surgical blood order schedule. Transfusion 1979; 19:268–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Surgenor DM, Wallace EL, Churchill WH, Hao SH, Chapman RH, Poss R. Red cell transfusions in total knee and total hip replacement surgery. Transfusion 1991; 31:531–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Pinkerton PH, Coovadia AS, Seigel C. Audit of the use of packed red blood cells in association with seven common surgical procedures. Transfus Med 1992; 2:231–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Surgenor DM, Wallace EL, Churchill WH, Hao SH, Chapman RH, Collins JJ Jr. Red cell transfusions in coronary artery bypass surgery (DRGs 106 and 107). Transfusion 1992; 32:458–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Goodnough LT, Johnston MF, Shah T, Chernosky A. A two-institution study of transfusion practice in 78 consecutive adult elective open-heart procedures. Am J Clin Pathol 1989; 91:468–72.PubMedGoogle Scholar
  13. 13.
    Goodnough LT, Johnston MF, Toy PT;The Transfusion Medicine Academic Award Group. The variability of transfusion practice in coronary artery bypass surgery. JAMA 1991; 265:86–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators for the Canadian Critical Care Trials Group. N Engl J Med 1999; 340:409–17.PubMedCrossRefGoogle Scholar
  15. 15.
    Kleinman S. Hepatitis G virus biology, epidemiology, and clinical manifestations: implications for blood safety. Transfus Med Rev 2001; 15:201–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Hebert PC, Fergusson D, Blajchman MA, et al. Clinical outcomes following institution of the Canadian universal leukoreduction program for red blood cell transfusions. JAMA 2003; 289:1941–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Karkouti K, Cohen MM, McCluskey SA, Sher GD. A multivariable model for predicting the need for blood transfusion in patients undergoing first-time elective coronary bypass graft surgery. Transfusion 2001; 41:1193–1203.PubMedCrossRefGoogle Scholar
  18. 18.
    Covin R, O’Brien M, Grunwald G, et al. Factors affecting transfusion of fresh frozen plasma, platelets, and red blood cells during elective coronary artery bypass graft surgery. Arch Pathol Lab Med 2003; 127:415–23.PubMedGoogle Scholar
  19. 19.
    Surgenor DM, Churchill WH, Wallace EL, et al. Determinants of red cell, platelet, plasma, and cryoprecipitate transfusions during coronary artery bypass graft surgery: the Collaborative Hospital Transfusion Study. Transfusion 1996; 36:521–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Magovern JA, Sakert T, Benckart DH, et al. A model for predicting transfusion after coronary artery bypass grafting. Ann Thorac Surg 1996; 61:27–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Cosgrove DM, Loop FD, Lytle BE, et al. Determinants of blood utilization during myocardial revascularization. Ann Thorac Surg 1985; 40:380–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Hebert PC, Schweitzer I, Calder L, Blajchman M, Giulivi A. Review of the clinical practice literature on allogeneic red blood cell transfusion. CMAJ 1997; 156(11 suppl): S9–26.Google Scholar
  23. 23.
    Calder L, Hebert PC, Carter AO, Graham ID. Review of published recommendations and guidelines for the transfusion of allogeneic red blood cells and plasma. CMAJ 1997; 156(11 suppl): S1–8.Google Scholar
  24. 24.
    Chiavetta JA, Herst R, Freedman J, Axcell TJ, Wall AJ, Van Rooy SC. A survey of red cell use in 45 hospitals in central Ontario, Canada. Transfusion 1996; 36:699–706.PubMedCrossRefGoogle Scholar
  25. 25.
    Baele PL, De Bruyèee M, Deneys V, et al. The SANGUIS study in Belgium: an overview of methods and results. The Belgium SANGUIS Study Group. Acta Chir Belg 1994; 94:69–74.PubMedGoogle Scholar
  26. 26.
    Kuriyan M, Kim DU, Wake E, Kress S, Pachter I, Nayak S. Analysis of surgical blood use in New Jersey. N J Med 1987; 84:251–5.PubMedGoogle Scholar
  27. 27.
    Schots J, Steenssens L. Blood usage review in a Belgian university hospital. Int J Qual Health Care 1994; 6:41–5.PubMedGoogle Scholar
  28. 28.
    Pinkerton PH, Coovadia AS, Downie H. Transfusion practice in support of surgery during introduction of a hospital-based autologous presurgical blood donor program. Can J Surg 1995; 38:154–60.PubMedGoogle Scholar
  29. 29.
    Palermo G, Bove J, Katz AJ. Patterns of blood use in Connecticut. Transfusion 1980; 20:704–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Welch HG, Meehan KR, Goodnough LT. Prudent strategies for elective red blood cell transfusion. Ann Intern Med 1992; 116:393–402.PubMedGoogle Scholar
  31. 31.
    Sirchia G, Giovanetti AM, McClelland DB, Fracchia GN. Safe and Good Use of Blood in Surgery (SANGUIS): Use of blood and artificial colloids in 43 European hospitals. Luxembourg: European Comission; 1994.Google Scholar
  32. 32.
    Khanna MP, Hebert PC, Fergusson DA. Review of the clinical practice literature on patient characteristics associated with perioperative allogeneic red blood cell transfusion. Transfus Med Rev 2003; 17:110–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hebert PC, Wells G, Martin C, et al. A Canadian survey of transfusion practices in critically ill patients. Crit Care Med 1998; 26:482–7.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2005

Authors and Affiliations

  • Brian Hutton
    • 1
    • 2
  • Dean Fergusson
    • 1
    • 2
    • 3
  • Alan Tinmouth
    • 1
    • 2
    • 3
    • 4
  • Lauralyn McIntyre
    • 1
    • 2
    • 3
  • Andrew Kmetic
    • 1
    • 2
  • Paul C. Hébert
    • 1
    • 2
    • 3
  1. 1.Clinical Epidemiology ProgramOttawa Health Research InstituteOttawaCanada
  2. 2.Centre for Transfusion ResearchOttawa Hospital, General CampusOttawaCanada
  3. 3.University of Ottawa, Faculty of MedicineOttawaCanada
  4. 4.Canadian Blood ServicesOttawaCanada

Personalised recommendations