Advertisement

Non-invasive quantification of diaphragm kinetics using m-mode sonography

  • Jean Ayoub
  • Robert Cohendy
  • Michel Dauzat
  • Rémi Targhetta
  • Jean-Eminanuel De La Coussaye
  • Jean-Marie Bourgeois
  • Michèle Ramonatxo
  • Christian Prefaut
  • Léandre Pourcelot
Measurement Techniques

Abstract

Purpose

The standard conditions of spirometry (i.e., wearing a noseclip and breathing through a mouthpiece and a pneumotachograph) are likely to alter the ventilatory pattern. We used “time-motion” mode (M-mode) sonography to assess the changes in diaphragm kinetics induced by spirometry dunng quiet breathing.

Methods

An M-mode sonographic study of the nght diaphragm was performed before and dunng standard spirometry in eight patients without respiratory disease (age 34 to 68 yr).

Results

During spirometry, the diaphragm inspiratory amplitude (DIA) increased from 1.34 ± 0.18 cm to 1.80 ± 0.18 cm (P = 0.007), whereas the diaphragmatic mspiratory time (T1 diaph) increased from 1.27 ± 0.15 to 1.53 ± 0.23 sec, (P = 0.015), without change in diaphragmatic total time interval (Ttot diaph). Therefore, the diaphragm duty cycle (T1 diaph /Ttot diaph) increased from 38% ± 1% to 44% ± 4% (P = 0.023). The diaphragm inspiratory (DIV) and expiratory (DEV) motion velocity increased (P = 0.007).

Conclusion

M-mode sonography enabled us to demonstrate that the weanng of a nose clip and breathing through a mouthpiece and a pneumotachograph induce measurable changes in diaphragm kinetics.

Keywords

Duchenne Muscular Dystrophy Ultrasound Beam Ventilatory Pattern Quiet Breathing Diaphragmatic Paralysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

M

mode sonography, time-motion mode sonography

DIA

diaphragm inspiratory amplitude

T1

diaph, diaphragm inspiratory time

TE

diaph, diaphragm expiratory time

DIV

diaphragm inspiratory motion mean velocity

DEV

diaphragm expiratory motion mean velocity

Ttot

diaph, total time of diaphragmatic cycle

T1/Ttot

diaph, the diaphragmatic inspiratory ratio

DMT

diaphragm motion time

DRT

diaphragm resting time

VT

tidal volume

T1

inspiratory time

TE

expiratory time

VT/TI

mean inspiratory flow

Ttot

total time

TI/Ttot

inspiratory duty cycle

Résumé

Objectif

Les conditions de la spirométne standard (c.-à-d. le port du pince-nez et la respiration à travers un embout buccal et un pneumotacographe) sont susceptibles d’altérer la morphologie de la ventilation. Nous avons utilisé le mode «temps-amplitude» (mode M) de la sonographie pour évaluer les changements de la cinétique diaphragmatique provoqués par la spirométne pendant la respiration de repos.

Résultats

Pendant la spirométne, l’amplitude mspiratoire diaphragmatique augmentait de 1, 34 ± 0, 18 à 1, 80 ± 0, 18 cm (P = 0, 007), alors que le temps diaphragmatique mspiratoire (T1 diaph) augmentait de 1, 27 ± 0, 15 à 1, 53 ± 0, 23 sec (P = 0, 015), sans changement du temps diaphragmatique total (Ttot diaph). Par conséquent, le temps de l’activité diaphragmatique (T1 diaph/Ttot diaph) augmentait de 38 ± 1 % à 44 ± 4% (P = 0, 023). La vélocité de l’amplitude mspiratoire et expiratoire augmentait (P = 0, 007).

Conclusion

La sonographie en mode M nous a permis de démontrer que le port du pince-nez et la respiration à travers un embout buccal et un pneumotacographe provoquent des changements tangibles de la cinétique diaphragmatique.

References

  1. 1.
    Diament MJ, Boechat MI, Kangarloo H. Real-time sector ultrasound in the evaluation of suspected abnormalities of diaphragmatic motion. J Clin Ultrasound 1985; 13: 539–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Helzel MV, Grunze M. Quantitative determination of diaphragm motility via sonography. Comparison with parameters of lung function test and thoracic X-ray film. (German) Röntgen-blatter 1985; 38: 248–52.Google Scholar
  3. 3.
    Ambler R, Gruenewald S, John E. Ultrasound monitoring of diaphragm activity in bilateral diaphragmatic paralysis. Arch Dis Child 1985; 60: 170–2.PubMedGoogle Scholar
  4. 4.
    Langhorst H, Pauling H, Varlemann H. Sonographic assessment of diaphragm motility in patients with chronic obstructive respiratory diseases. (German) Med Klin 1988; 83: 168–70.Google Scholar
  5. 5.
    Laing I A, Teele R L, Stark A R. Diaphragmatic movement in newborn infants. J Pediatr 1988; 112: 638–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Drummond GB, Allan PL, Logan MR. Changes in diaphragmatic position in association with the induction of anaesthesia. Br J Anaesth 1986; 58: 1246–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Loring SH, Kuracbek SC, Whol MEB. Diaphragmatic excursion after pleural sclerosis. Chest 1989; 95: 374–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Fedullo AJ, Lerner RM, Gibson J, Shayne DS. Sonographic measurement of diaphragmatic motion after coronary artery bypass surgery. Chest 1992; 102: 1683–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Jousela I, Mäkeläinen A, Tahvanainen J, Nikki P. Diaphragmatic movement using ultrasound during spontaneous and mechanical ventilation: effect of tidal volume. Acta Anaesth Belg 1992; 43: 165–71.PubMedGoogle Scholar
  10. 10.
    Haber K, Asher W M, Freimanis A K. Echographic evaluation of diaphragmatic motion in intraabdominal disease. Radiology 1975; 114: 141–4.PubMedGoogle Scholar
  11. 11.
    Wait JL, Nahormek PA, Yost WT, Rochester DP. Diaphragmatic thickness-lung volume relationship in vivo. J Appl Physiol 1989; 67: 1560–8.PubMedGoogle Scholar
  12. 12.
    Heyman E, Ohlsson A, Heyman Z, Fong K. The effect of aminophylline on the excursions of the diaphragm in preterm neonates. Acta Paediatr Scand 1991; 80: 308–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Weissman C, Askanazi J, Milic-Emili J, Kinney JM. Effect of respiratory apparatus on respiration. J Appl Physiol 1984; 57: 475–80.PubMedGoogle Scholar
  14. 14.
    Rodenstein DO, Mercenier C, Stanescu DC. Influence of the respiratory route on the resting breathing pattern in humans. Am Rev Respir Dis 1985; 131: 163–6.PubMedGoogle Scholar
  15. 15.
    Verral AB, Julian JA, Muir DCF, Haines AT. Use of noseclips in pulmonary function tests. Journal of Occupational Medicine 1989; 31: 29–31.Google Scholar
  16. 16.
    Whitelaw WA. Shape and size of the human diaphragm in vivo. J Appl Physiol 1987; 62: 180–6.PubMedGoogle Scholar
  17. 17.
    Houston JG, Morris AD, Howie CA, Reid JL, McMillan N. Technical report: quantitative assessment of diaphragmatic movementa reproducible method using ultrasound. Clin Radiol 1992; 46: 405–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobylarz EJ, Daubenspeck JA. Iminediate diaphragmatic electromyogram responses to imperceptible mechanical loads in conscious humans. J Appl Physiol 1992; 73: 248–59.PubMedGoogle Scholar
  19. 19.
    Perez W, Tobin MJ. Separation of factors responsible for change in breathing pattern induced by instrumentation. J Appl Physiol 1985; 59: 1515–20.PubMedGoogle Scholar
  20. 20.
    Gilbert R, Auchincloss JH Jr, Brodsky J, Boden W. Changes in tidal volume, frequency, and ventilation induced by their measurement. J Appl Physiol 1972; 33: 252–4.PubMedGoogle Scholar
  21. 21.
    Ramonatxo M, Mercier J, Cohendy R, Préfaut C. Effect of resistive loads on pattern of respiratory muscle recruitment during exercise. J Appl Physiol 1991; 71: 1941–8.PubMedGoogle Scholar
  22. 22.
    Andersen P. Inhibitory reflexes elicited from the trigeminal and olfactory nerves in rabbits. Acta Physiol Scand 1953; 30: 137–48.CrossRefGoogle Scholar
  23. 23.
    Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 1967; 22: 407–22.PubMedGoogle Scholar
  24. 24.
    Ayoub J, Milane J, Targhetta R, Jonquet O, Bourgeois JM, Balmès P. Diaphragm kinetics during pneumatic belt respiratory assistance, a sonographic study in Duchenne muscular dystrophy. Intensive Care Med 1995; 21: S120.CrossRefGoogle Scholar
  25. 25.
    Targhetta R, Chavagneux R, Ayoub J, et al. Right diaphragmatic kinetics measured by TM-mode ultrasonography with concomitant spirometry in normal subjects and asthmatic patients. Preliminary results. (French) Rev Med Interne 1995; 16: 819–26.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1997

Authors and Affiliations

  • Jean Ayoub
    • 1
  • Robert Cohendy
    • 2
  • Michel Dauzat
    • 3
  • Rémi Targhetta
    • 4
  • Jean-Eminanuel De La Coussaye
    • 2
  • Jean-Marie Bourgeois
    • 1
  • Michèle Ramonatxo
    • 5
  • Christian Prefaut
    • 2
  • Léandre Pourcelot
    • 6
  1. 1.Department of UltrasoundNîmes University HospitalNîmesFrance
  2. 2.Departments of Anaesthesia and Intensive CareNîmes University HospitalNîmesFrance
  3. 3.Department of Medical ImagingNîmes University HospitalNîmesFrance
  4. 4.Departments of Pneumology Unit and internal medicine ANîmes University HospitalNîmesFrance
  5. 5.Laboratory of Physiological InteractionsMontpellier University HospitalMontpellierFrance
  6. 6.Nuclear Medicine and UltrasoundINSERM U316, Tours University HospitalToursFrance

Personalised recommendations