Canadian Journal of Anaesthesia

, Volume 44, Issue 8, pp 849–867

The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach

  • Eric Jacobsohn
  • Robin Chorn
  • Michael O’Connor
Review Article

Abstract

Purpose

To review the physiology of cardiac output regulation by the peripheral vasculature. This will enable the clinician to understand and manage the complex circulatory changes in vanous forms of shock, and in other common altered circulatory states encountered in anaesthetic practice.

Source

Articles were obtained from a Medline review (1966 to present; search terms: shock, venous return, cardiac output) and a hand search (Index Medicus). Other sources include review articles, personal files, and textbooks.

Principal findings

At steady state, cardiac output is equal to venous return (VR). Venous return depends on mean systemic pressure (PMS, which is the pressure in the peripheral vasculature driving blood flow to the heart, right atrial pressure (PRA, and the resistance to venous return (Rv. When considenng VR, PRA is the downstream pressure to VR. and not simply an indirect measure of the volume status. The pressure gradient for VR is, therefore, PMS−PRA, and in a system obeying Ohm’s Law,\(VR = \frac{{P_{MS} - P_{RA} }}{{R_{RA} }}\) Shock and other altered circulatory states cause changes in both VR and cardiac function. The circulation can be conveniently described by a venous return and a cardiac output curve. By drawing these curves for each clinical situation. a clear understanding of the altered circulatory state is obtained, and treatment options can be clearly defined.

Conclusion

The peripheral circulation controls cardiac output in many clinical conditions. Manipulation of the peripheral circulation is as important to the successful treatment of shock and other altered circulatory states, as is the manipulation of cardiac output.

Résumé

Objectif

Revoir la physiologie de la régulation vasculaire périphérique du débit cardiaque. Ceci devrait permettre au clinicien de comprendre et de prendre en charge les changements circulatoires complexes survenant dans les états de choc et autres états d’instabilité circulatoire rencontrés en anesthésie.

Source

Les articles ont été compilés grâce à un survol deMedline (de 1966 jusqu’à maintenant: mots-clés: choc, retour veineux, débit cardiaque) et une recherche manuelle (Index Medicus). Des articles de revue, des dossiers personnels et des manuels ont aussi été utilisés.

Principales constatations

À l’état d’équilibre, le débit cardiaque est égal au retour veineux (RV). Le RV dépend de la pression systolique moyenne (PSM) laquelle est constituée de la pression vasculaire périphériques qui arnène le sang au coeur, la pression aunculaire droite (PAD) et la résistance au retour veineux (RV Si on examine le RV on constate que la PAR est la pression d’aval du RV et non simplement une mesure indirecte de la volémie. Le gradient de la pression pour RV est donc PSM−PRA et ce système obéit à la loi d’Ohm.\(RV = \frac{{P_{SM} - P_{AR} }}{{R_V }}\) Le choc et les autres états d’instabilité circulatoire modifient à la fois le RV et la fonction cardiaque. Il est commode de représenter la circulation par une courbe du retour veineux et du débit cardiaque. Le tracé de ces courbes pour chacune des situations cliniques permet de mieux comprendre l’état d’instabilité circulatoire et d’accéder à des options thérapeutiques clairement définies.

Conclusion

Dans plusieurs situations cliniques, la circulation périphérique contrôle le débit cardiaque. La manipulation de la circulation périphérique constitue un traitement important du choc et des autres états d’instabilité circulatoire au même titre que la manipulation du débit cardiaque.

References

  1. 1.
    Weber E. The law of pulsatile flow and its application to the circulation. Primitive model of the circulation. (German)In: Berichte ueber die Verhandlungen der Konigl Sachsischer Gesellschaften der Wissen-Schaften zu Leipzig, Weidmanische Buchhandlung, 1850.Google Scholar
  2. 2.
    Bayliss WM, Starling EH. Observations on venous pressures and their relationship to capillary pressures. J Physiol 1894; 16: 159–202.PubMedGoogle Scholar
  3. 3.
    Starling EH. The Arris and Gale lectures. Some points in the pathology of heart disease. Lancet 1897; 1: 652–5.CrossRefGoogle Scholar
  4. 4.
    Starr I, Rawson AJ. Role of the “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. I. Theoretical studies on an improved circulation schema whose pumps obey Starling’s law of the heart. Am J Med Sci 1940; 199: 27–39.CrossRefGoogle Scholar
  5. 5.
    Starr I. Role of the “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. II. Clinical and experimental studies. Am J Med Sci 1940; 199: 40–55.CrossRefGoogle Scholar
  6. 6.
    Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol 1955; 180: 463–8.PubMedGoogle Scholar
  7. 7.
    Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of cardiac pumping. Am J Physiol 1954; 179: 261–7.PubMedGoogle Scholar
  8. 8.
    Bressack MA, Kaffin TA. Importance of venous return, venous resistance, and mean circulatory pressure in the physiology and management of shock. Chest 1987; 92: 906–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Sylvester JT, Goldberg HS, Permutt S. The role of the vasculature in the regulation of cardiac output. Clin Chest Med 1983; 4: 111–26.PubMedGoogle Scholar
  10. 10.
    Magder S. Shock physiology.In: Pinsky MR, Dhainaut JF (Eds.). Pathophysiological Foundations of Critical Care. Baltimore, MD: William and Wilkens, 1993: 140–59.Google Scholar
  11. 11.
    Permutt S, Caldini P. Regulation of the cardiac output by the circuit: venous return.In: Boan J, Noordegraff A, Raines J (Eds.). Cardiovascular System Dynamics. Cambridge, MA, London: MIT Press, 1978: 465–79.Google Scholar
  12. 12.
    Green JF. Circulatory mechanics.In: Fundamental Cardiovascular and Pulmonary Physiology. Philadelphia, PA: Lea and Febiger, 1982: 101–10.Google Scholar
  13. 13.
    Guyton A, Jones C, Coleman T. Circulatory Physiology: Cardiac Output and its Regulation. Philadelphia, WB Saunders, 1973.Google Scholar
  14. 14.
    Wally KR, Wood LD. Shock.In: Hall JB, Schmidt GA, Wood LD (Eds.). Principles of Critical Care. New York: McGraw-Hill, 1992: 1393–416.Google Scholar
  15. 15.
    Blalock A. Experimental shock. The cause of the low blood pressure produced by muscle injury. Arch Surg 1930; 20: 959.Google Scholar
  16. 16.
    Cournand A, Riley RL, Bradley SE, et al. Studies of the circulation in clinical shock. Surg 1943; 13: 964.Google Scholar
  17. 17.
    Weil MH, Shubin H. Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol 1972; 23: 13–22.Google Scholar
  18. 18.
    Deschamps A, Magder S. Neuropeptide Y decreases splanchnic vascular capacitance. FASEB 1989; 3: A774.Google Scholar
  19. 19.
    Descbamps A, Shrier I, Magder S. Regional capacitance and unstressed volume changes in dogs during heat stress. FASEB 1991; 5: A1182.Google Scholar
  20. 20.
    Rothe CF. Reflex control of veins and vascular capacitance. Physiol Rev 1983; 63: 1281–342.PubMedGoogle Scholar
  21. 21.
    Rothe CF, Drees JA. Vascular capacitance and fluid shifts in dogs during prolonged hemorrhagic hypotension. Circ Res 1976; 38: 347–56.PubMedGoogle Scholar
  22. 22.
    Rothe CF, Johns BL, Bennett TD. Vascular capacitance of dog intestine using mean transit time of indicator. Am J Physiol 1978; 234: H7–13.PubMedGoogle Scholar
  23. 23.
    Lucas C, Ledgerwood A. Cardiovascular and renal response to hemorrhage and septic shock.In: Clowes G (Ed.). Trauma Sepsis and Shock: The Physiological Basis of Therapy. New York: Marcel Decker, 1988: 187–215.Google Scholar
  24. 24.
    Appleton C, Olajos M, Morkin E, Goldman S. Alpha-1 adrenergic control of the venous circulation in intact dogs. J Pharmacol Exp Ther 1985; 233: 729–34.PubMedGoogle Scholar
  25. 25.
    Green JF. Mechanism of action of isoproterenol on venous return. Am J Physiol 1977; 232: H152–6.PubMedGoogle Scholar
  26. 26.
    Peitzman AB. Hypovolemic Shock.In: Pinsky MR, Dhainaut JF (Eds.). Pathophysiological Foundations of Critical Care, Baltimore, MD: William and Wilkens, 1993: 161–9.Google Scholar
  27. 27.
    Mitzner W, Goldberg H. Effects of epinephrine on resistive and compliant properties of the canine vasculature. J Appl Physiol 1975; 39: 272–80.PubMedGoogle Scholar
  28. 28.
    Mutnick AH, Szymusiak-Mutnick B, Drea EJ. Dopamine versus dobutamine: are all the facts there? Pharmacotherapy 1990; 10: 224–9.PubMedGoogle Scholar
  29. 29.
    Rennotte MT, Reynaert M, Clerbaux Th, et al. Effects of two inotropic drugs, dopamine and dobutamine, on pulmonary gas exchange in artificially ventilated patients. Intensive Care Med 1989; 15: 160–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Francis GS, Sharma B, Hodges M. Comparative hemodynamic effects of dopamine and dobutamine in patients with acute cardiogenic circulatory collapse. Am Heart J 1982; 103: 995–1000.PubMedCrossRefGoogle Scholar
  31. 31.
    Monrad ES, Baim DS, Smith HS, Lanoue A, Braunwald E, Grossman W. Effects of milrinone on coronary hemodynamics and myocardial energetics in patients with congestive heart failure. Circulation 1985; 71: 972–9.PubMedGoogle Scholar
  32. 32.
    Katz AM. Interplay between inotropic and lusitropic effects of cyclic adenosinemonophosphate on the myocardial cell. Circulation 1990; 82(Suppl 2): 17–11.Google Scholar
  33. 33.
    Lincoln TM. Cyclic GMP and mechanisms of vasodilatation. Pharmacol Ther 1989; 41: 479–502.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith TW, Braunwald E, Kelly R. Management of heart failure.In: Braunwald E. (Ed.). Heart Disease: A Textbook of Cardiovascular Medicine, 4th ed. Philadelphia: WB Saunders, 1992: 501–19.Google Scholar
  35. 35.
    Hess ML, Hastillo A, Greenfield LJ. Spectrum of cardiovascular function during gram-negative sepsis. Prog Cardiovasc Dis 1981; 23: 279–98.PubMedCrossRefGoogle Scholar
  36. 36.
    Correa E, Mink S, Unruh H, Kepron W. Left ventricular contractility is depressed in IgEmediated anaphylactic shock in dogs. Am J Physiol 1991; 260: H744–51.PubMedGoogle Scholar
  37. 37.
    Levy JH. Anaphylactic/anaphylactoid reactions during cardiac surgery. J Clin Anesth 1989; 1: 426–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Jacobsen J, Johnsen CR, Skov PS, Warberg J, Knigge U, Secher NH. Cardiovascular and hormonal responses to anaphylactic shock in the pig. Clin Physiol 1995; 15: 81–90.PubMedGoogle Scholar
  39. 39.
    Barsan WG, Hedges JR, Syverud SA, Dalsey WC. A hemodynamic model for anaphylactic shock. Ann Emerg Med 1985; 14: 834–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Tani H, Horibe M, Tanaka H, Ami K, Tsuchiya T. Clinical observation of hemodynamic changes during anaphylactic reaction. (Japanese) Masui 1991; 40: 1856–62.PubMedGoogle Scholar
  41. 41.
    Shah S, Shah A, Bhatia E, Ganjoo AK. Addisonian crisis following pericardiectomy. Cardiovasc Surg 1994; 2: 646–8.PubMedGoogle Scholar
  42. 42.
    Smith MG, Byrne AJ. An Addisonian crisis complicating anaesthesia. Anaesthesia 1981; 36: 681–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100: 483–90.PubMedGoogle Scholar
  44. 44.
    Dorin RI, Kearns PJ. High output circulatory failure in acute adrenal insufficiency. Crit Care Med 1988; 16: 296–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Akbarian M, Tankopoulos NA, Abelmann WH. Hemodynamic studies in Beriberi heart disease. Am J Med 1966; 41: 197–212.PubMedCrossRefGoogle Scholar
  46. 46.
    Bressack MA, Morton MS, Hortop J. Group B streptococcal sepsis in the piglet: effects of fluid therapy on venous return, organ edema, and organ blood flow. Circ Res 1987; 61: 659–69.PubMedGoogle Scholar
  47. 47.
    MacLean MR, Hiley CR. Effect neuropeptide Y on cardiac output, its distribution, regional blood flow and organ vascular resistances in the pithed rat. Br J Pharmacol 1990; 99: 340–2.PubMedGoogle Scholar
  48. 48.
    Burrell R. Human responses to bacterial endotoxin. Circ Shock 1994; 43: 137–53.PubMedGoogle Scholar
  49. 49.
    Matuschak GM, Martinez LH. Sepsis syndrome: pathogenesis, pathophysiology, and management.In: Pinsky MR, Dhainaut JF. (Eds.). Pathophysiologic Foundations of Critical Care. Baltimore, MD: Williams and Wilkins, 1993: 170–86.Google Scholar
  50. 50.
    Van Lambalgen AA, Bronsveld W, Van den Bos GC, Thijs LG. Distribution of cardiac output, oxygen consumption and lactate production in the canine endotoxin shock. Cardiovasc Res 1984; 18: 195–205.PubMedCrossRefGoogle Scholar
  51. 51.
    Snell RJ, Parrillo JE. Cardiovascular dysfunction in septic shock. Chest 1991; 99: 1000–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Carli A, Auclair M-C, Benassayag C, Nunez E. Evidence for an early lipid soluble cardiodepressant factor in rat serum after a sublethal dose of endotoxin. Circ Shock 1981; 8: 301–12.PubMedGoogle Scholar
  53. 53.
    Reilly JM, Cunnion RE, Burch-Whittman C, Parker MM, Shelhammer JH, Parrillo JE. A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest 1989; 95: 1072–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Werner HA, Herbertson MJ, Walley KR. Amrinone increases ventricular contractility and diastolic compliance in endotoxemia. Am J Resp Crit Care Med 1995; 152: 496–503.PubMedGoogle Scholar
  55. 55.
    Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ, Parrillo JE. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 1986; 78: 259–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Baxter F. Septic shock. Can J Anaesth 1997; 44: 59–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Stoelting RK. Sympathomimetics.In: Stoelting RK (Ed.). Pharmacology and physiology in anesthestic practices, 2nd ed. Philadelphia, PA: J. B. Lippincott, 1987: 264–83.Google Scholar
  58. 58.
    Livingston DH, Deitch EA. Multiple organ failure: a common problem in surgical intensive care unit patients. Ann Med 1995; 27: 13–20.PubMedCrossRefGoogle Scholar
  59. 59.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992; 20: 864–74.Google Scholar
  60. 60.
    Molloy DW, Ducas J, Dobson K, Girling L, Prewitt RM. Hemodynamic management of clinical acute hypoxemic respiratory failure. Dopaminevs dobutamine. Chest 1986; 89: 636–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Malo J, Goldberg H, Graham R, Unruh H, Skoog C. Effect of hypoxic hypoxia on systemic vasculature. J App Physiol 1984; 56: 1403–10.Google Scholar
  62. 62.
    Sylvester J, Gilbert RD, Traystman RJ, Permutt S. Effects of hypoxia on the closing pressure of the canine systemic arterial circulation. Circ Res 1981; 49: 980–7.PubMedGoogle Scholar
  63. 63.
    Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. Instantaneous pressure-volume relationship of the canine right ventricle. Circ Res 1979; 44: 309–15.PubMedGoogle Scholar
  64. 64.
    Tator CH. Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neuro-Chirurgie 1991; 37: 291–302.PubMedGoogle Scholar
  65. 65.
    Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. N Eng J Med 1990; 322: 1405–11.Google Scholar
  66. 66.
    Bonica JJ, Berges PU, Morikawa K. Circulatory effects of peridural block: I: Effects of level of analgesia and dose of lidocaine. Anesthesiology 1970; 33: 619–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Taylor K. Cardiopulmonary bypass. Principles and management. Baltimore, MD: Williams and Wilkens, 1986.Google Scholar
  68. 68.
    Hessel E. Cardiopulmonary bypass circuitry and cannulation.In: Gravlee G, Davis R, Utley J (Eds.). Cardiopulmonary Bypass. Principles and Practice. Baltimore, MD: Williams and Wilkins, 1993.Google Scholar
  69. 69.
    Bromage PR. Physiology and pharmacology of epidural analgesia. Anesthesiology 1967; 28: 592–622.PubMedCrossRefGoogle Scholar
  70. 70.
    Marx GF. Shock in the obstetric patient. Anesthesiology 1965; 26: 423–34.PubMedGoogle Scholar
  71. 71.
    Thomson IR. Cardiovascular physiology: VENOUS RETURN. Can Anaesth Soc J 1984; 31: S31–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Pagel PS, Kampine JP, Schmeling WT, Warltier DC. Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane, halothane, and enflurane in the chronically instrumented dog. Anesthesiology 1991; 74: 539–51.PubMedGoogle Scholar
  73. 73.
    Pagel PS, Grossman W, Haering JM, Warltier DC. Left ventricular diastolic function in the normal and diseased heart. Perspectives for the anesthesiologist (2). Anesthesiology 1993; 79: 1104–20.PubMedCrossRefGoogle Scholar
  74. 74.
    Pagel PS, Grossman W, Haering JM, Warltier DC. Left ventricular diastolic function in the normal and diseased heart. Perspectives for the anesthesiologist (1). Anesthesiology 1993; 79: 836–54.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1997

Authors and Affiliations

  • Eric Jacobsohn
    • 1
  • Robin Chorn
    • 2
  • Michael O’Connor
    • 1
  1. 1.Department of Anesthesia and Critical CareUniversity of ChicagoChicago
  2. 2.Department of AnesthesiaUniversity of Southern CaliforniaLos Angeles
  3. 3.Department of Anesthesia and Section of Critical Care MedicineUniversity of Manitoba, Health Sciences CentreWinnipegCanada

Personalised recommendations