Canadian Journal of Anaesthesia

, Volume 44, Issue 2, pp 202–207

Chronic cocaine administration does not modify haemodynamic responses to isoflurane anaesthesia in sheep

  • Christopher M. Bernards
  • Christian Kern
  • Bruce F. Cullen
Laboratory Investigations

Abstract

Purpose

Cocaine use is epidemic in the developed world, resulting in numerous patients presenting for surgery and anaesthesia with a history of chronic cocaine exposure. The purpose of this study was to determine the effect of chronic cocaine exposure on the cardiovascular response to isoflurane general anaesthesia.

Methods

The changes m mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP) and systemic vascular resistance (SVR) with increasing concentration of isoflurane (1%. 1.7%, and 2.4% end tidal) were determined at baseline m six sheep. The animals then received a continuous cocaine infusion (0.2 mg·kg−1·hr−1) and twice daily cocaine boluses (4 mg·kg−1) for 17 days followed on day 18 by a cocaine binge consisting of eight cocaine boluses (4 mg·kg−1) administered at one hour intervals. The haemodynamic stuthes conducted at baseline pnor to cocaine exposure were then repeated on days 15 and 18.

Results

Increasing concentrations of isoflurane produced the expected dose-dependent cardiovascular depression, but this was not altered by cocaine exposure.

Conclusion

Although chronic cocaine exposure has been shown to increase isoflurane minimum alveolar concentration by 25% m sheep: chronic cocaine exposure does not result in tolerance of the cardiovascular depression produced by isoflurane.

Résumé

Objectif

Dans les pays industrialisés, l’abus de la cocaïne a maintenant atteint l’état épidémique. De nombreux patients arrivent maintenant en anesthésie et en chirurgie avec une histoire de toxicocomanie. Cette étude visait à déterminer les effets de l’exposition chronique à la cocaïne sur la réponse cardiovasculaire de l’anesthésie générale à l’isoflurane

Méthodes

Les changements produits sur la pression artérielle moyenne, la fréquence cardiaque, le débit cardiaque, la tension veineuse centrale, la pression capillaire bloquée et la résistance vasculaire systémique par des concentrations croissantes d’isoflurane (télé-expiratoires 1%, 1,7% et 2,4%) ont d’abord été déterminés sur six moutons Les animaux ont ensuite reçu une perfusion continue (0,2 mg·kg−1·h−1) et deux bolus quotithens (4 mg·kg−1) de cocaïne pendant 17 Jours,suivis, le 18e Jour, par une séné de huit bolus (4 mg·kg−1) administrés à une heure d’intervalle. Les études hémodynamiques ayant servi comme valeurs de base avant l’exposition à la cocaine ont ensuite été répétées le 15e et le 18e jour.

Résultats

L’augmentation de la concentration d’isoflurane a provoqué la dépression cardiovasculaire proportionnelle prévue sans modification par la cocaïne.

Conclusion

Bien qu’il ait été démontré que l’exposition chronique à la cocaïne augmente la concentration alvéolaire minimum de 25% chez le mouton, elle n’augmente pas la tolérance à la dépression cardiovaculaire produite par-l’isoflurane.

References

  1. 1.
    Marzuk PM, Tardif K, Leon AC, et al. Fatal injuries after cocaine use as a leading cause of death among young adults in New York city. N Engl J Med 1995; 332: 1753–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Rivara FP, Mueller BA, Fligner CL, et al. Drug use in trauma victims. J Trauma 1989; 29: 462–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Brookoff D, Campbell EA, Shaw LM. The underreporting of cocaine-related trauma: drug abuse warning network reports vs hospital toxicology tests. Am J Public Health 1993; 83: 369–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernards CM, Kern C, Cullen BF. Chronic cocaine administration reversibly increases isoflurane minimum alveolar concentration in sheep. Anesthesiology 1996; 85: 91–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Hysing ES, Chelly JE, Doursout M-F, Merin RG. Comparative effects of halothane,enflurane, and isoflurane at equihypotensive doses on cardiac performance and coronary and renal blood flows in chronically instrumented dogs. Anesthesiology 1992; 76: 979–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Dixon WR, Chang A, Judd E, Carrillo H, Simms H. Effect of chronic cocaine on cardiovascular responses to norepinephrine and acetylcholinc in the conscious rat. Proc West Pharmacol Soc 1993; 36: 33–7.PubMedGoogle Scholar
  7. 7.
    Seagard JL, Elegbe EO, Hopp FA, et al. Effects of isoflurane on the baroreceptor reflex. Anesthesiology 1983; 59: 511–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Seagard JL, Hopp FA, Bosnjak ZJ, Osborn JL, Kampine JP. Sympathetic efferent nerve activity in conscious and isoflurane-anesthetized dogs. Anesthesiology 1984; 61: 266–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Jordan D, Miller ED Jr. Isoflurane-induced splanchnic sympathectomy. Anesth Analg 1993; 77: 291–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Pottieger AE, Tressel PA, Surratt HL, Inciardi JA, Chitwood DD. Drug use patterns of adult crack users in street versus residential treatment samples. J Psychoactive Drugs 1995; 27: 27–38.PubMedGoogle Scholar
  11. 11.
    Brett CM, Teitel DF, Heymann MA, Rudolph AM. The cardiovascular effects of isoflurane in lambs. Anesthesiology 1987; 67: 60–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Stanski DR. Monitoring depth of anesthesia.In: Miller RD (Ed.). Anesthesia, 3rd ed. New York: Churchill Livingstone, 1990: 1001–29.Google Scholar
  13. 13.
    Su JY, Bell JG. Intracellular mechanism of action of isoflurane and halothane on striated muscle of the rabbit. Anesth Analg 1986; 65: 457–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Horan BF, Prys-Roberts C, Roberts JG, Bennett MJ, Foëx P. Haemodynamic responses to isoflurane anaesthesia and hypovolaemia in the dog,and their modification by propranolol. Br J Anaesth 1977; 49: 1179–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Khan M, Gupta PK, Cristie R, et al. Determination of pharmacokinetics of cocaine in sheep by liquid chromatography. J Pharm Sci 1987; 76: 39–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Chow MJ, Ambre JJ, Ruo TI, Atkinson AJ, Bowsber DJ, Fischman MW. Kinetics of cocaine distribution, elimination, and chronotropic effects. Clin Pharmacol Ther 1985; 38: 318–24.PubMedGoogle Scholar
  17. 17.
    Resnick RB, Kestenbaum RS, Schwartz LK. Acute systemic effects of cocaine in man: a controlled study by intranasal and intravenous routes. Science 1977; 195: 696–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Fishman MW, Schuster CR, Javaid J, Hatano T, Davis J. Acute tolerance development to the cardiovascular and subjective effects of cocaine. J Pharmacol Exp Ther 1985; 235: 677–82.Google Scholar
  19. 19.
    Fischman MW, Schuster CR, Rajfer S. A comparison of the subjective and cardiovascular effects of cocaine and procaine in humans. Pharmacol Biochem Behav 1983; 18: 711–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnstone RE, Kulp RA, Smith TC. Effects of acute and chronic ethanol administration on isoflurane requirement in mice. Anesth Analg 1975; 54: 277–81.PubMedGoogle Scholar
  21. 21.
    Han TH. Why do chronic alcoholics require more anesthesia? Anesthesiology 1969; 30: 341–2.CrossRefGoogle Scholar
  22. 22.
    Wolfson B, Freed B. Influence of alcohol on anesthetic requirements and acute toxicity. Anesth Analg 1980; 59: 826–30.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1997

Authors and Affiliations

  • Christopher M. Bernards
    • 1
  • Christian Kern
    • 1
  • Bruce F. Cullen
    • 1
  1. 1.Department of AnesthesologyUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations