Canadian Journal of Anesthesia

, 46:872

Intraoperative high dose fentanyl induces postoperative fentanyl tolerance

  • Yuan-Yi Chia
  • Kang Liu
  • Jhi-Joung Wang
  • Mei-Ching Kuo
  • Shung-Tai Ho
Reports of Investigation

Abstract

Purpose

In a randomized, double-blind clinical trial, we compared the postoperative analgesic effect and dose consumption of fentanyl after intraoperative high dose and low dose fentanyl administration.

Methods

Sixty ASA class I to II female patients undergoing total abdominal hysterectomy (TAH), were randomly allocated to receive either 1 μg· kg−1 (low dose group, n = 30) or 15 μg· kg−1 (high dose group, n = 30) fentanyl during induction of anesthesia. Anesthesia depth was maintained with inhalation of halothane in the low dose group, or combined with 100 μg· hr−1 fentanyliv in the high dose group. Postoperative pain was treated with an intravenous patient-controlled analgesia system and was assessed with a visual analog pain score at rest.

Results

Patients in the high dose group had higher pain intensity at four and eight hours postoperatively, more fentanyl consumption and a greater incidence of emesis in the postoperative period of 16 hr than those in the low dose group (P < 0.05). Heart rate, blood pressure, and respiratory rate were similar between the two groups. Conclusion: Our results suggest that acute fentanyl tolerance develops after administration of high dose fentanyl during surgery and, consequently, results in a higher postoperative pain intensity and greater fentanyl consumption.

Résumé

Objectif

Comparer, dans un essai clinique randomisé, à double insu, l’effet analgésique postopératoire et la consommation de fentanyl après l’administration peropératoire de forte et faible dose de fentanyl.

Méthode

Soixante patientes de classes I et II ASA devant subir une hystérectomie abdominale totale (HAT) ont été réparties au hasard et ont reçu, soit 1 μg· kg−1 (groupe de faible dose, n = 30), soit 15 μg· kg−1 (groupe de forte dose, n = 30) de fentanyl pendant l’induction de l’anesthésie. La profondeur de l’anesthésie a été maintenue avec l’inhalation d’halothane dans le groupe à faible dose, ou en combinaison avec 100 μg· hr−1 de fentanyliv, dans le groupe à forte dose. La douleur postopératoire a été soulagée avec une analgésie intraveineuse contrôlée par la patiente et évaluée, au repos, à l’aide d’une échelle visuelle analogue.

Résultats

Les patientes qui ont reçu la forte dose ont connu des douleurs plus intenses quatre et huit heures après l’opération, ont pris davantage de fentanyl et ont eu une plus grande incidence de vomissements dans les 16 h qui ont suivi l’opération, que celles qui ont reçu une faible dose (P < 0,05). La fréquence cardiaque, la tension artérielle et le rythme respiratoire n’ont pas présenté de différence intergroupe.

Conclusion

Les résultats suggèrent qu’une tolérance soudaine au fentanyl se développe après l’administration peropératoire d’une forte dose et qu’elle entraîne, par conséquent, des douleurs postopératoires plus intenses et une plus grande consommation de fentanyl.

References

  1. 1.
    Rosow CE, Philbin DM, Keegan CR, Moss J. Hemodynamics and histamine release during induction with sufentanil or fentanyl. Anesthesiology 1984; 60: 489–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Richmond CE, Bromley LM, Woolf CJ. Preoperative morphine pre-empts postoperative pain. Lancet 1993; 342: 73–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Fassoulaki A, Sarantopoulos C, Zotou M, Papoulia D. Preemptive opioid analgesia does not influence pain after abdominal hysterectomy. Can J Anaesth 1995; 42: 109–13.PubMedGoogle Scholar
  4. 4.
    Mansfield M, Meikle R, Miller C. A trial of pre-emptive analgesia. Influence of timing of perioperative alfentanil on postoperative pain and analgesic requirements. Anaesthesia 1994; 49: 1091–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Mushlin BE, Grell R, Cochin J. Studies on tolerance. I. The role of the interval between doses on the development of tolerance to morphine. J Pharmacol Exp Ther 1976; 196: 280–7.PubMedGoogle Scholar
  6. 6.
    Ling GSF, Paul D, Simantov R, Pasternak GW. Differential development of acute tolerance to analgesia, respiratory depression, gastrointestinal transit and hormone release in a morphine infusion model. Life Sci 1989; 45: 1627–36.PubMedCrossRefGoogle Scholar
  7. 7.
    McQuay HJ, Bullingham RES, Moore RA. Acute opiate tolerance in man. Life Sci 1981; 28: 2513–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Hovav E, Weinstock M. Temporal factors influencing the development of acute tolerance to opiates. J Pharmacol Exp Ther 1987; 242: 251–6.PubMedGoogle Scholar
  9. 9.
    Preble LM, Guveyan JA, Sinatra, RS. Patient characteristics influencing postoperative pain management.In: Sinatra RS, Hord AH, Ginsberg B, Preble LM (Eds.). Acute Pain: Mechanisms & Management. St. Louis: Mosby-Year Book, 1992: 140–50.Google Scholar
  10. 10.
    Tamsen A, Hartvig P, Fagerlund C, Dahlström B. Patient-controlled analgesic therapy, Part II: individual analgesic demand and analgesic plasma concentrations of pethidine in postoperative pain. Clin Pharmacokinet 1982; 7: 164–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Bailey PL, Pace NL, Ashburn MA, Moll JWB, East KA, Stanley TH. Frequent hypoxemia and apnea after sedation with midazolam and fentanyl. Anesthesiology 1990; 73: 826–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Hug CC Jr, Murphy MR. Fentanyl disposition in cerebrospinal fluid and plasma and its relationship to ventilatory depression in the dog. Anesthesiology 1979; 50: 342–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Peng PWH, Sandier AN. A review of the use of fentanyl analgsia in the management of acute pain in adults. Anesthesiology 1999; 90: 576–99.PubMedCrossRefGoogle Scholar
  14. 14.
    Askitopoulou H, Whitwam JG, Al-Khudhairi D, Chakrabarti M, Bower S, Hull CJ. Acute tolerance to fentanyl during anesthesia in dogs. Anesthesiology 1985; 63: 255–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Parker RK, Holtmann B, White PF. Patient-controlled analgesia. Does a concurrent opioid infusion improve pain management after surgery? JAMA 1991; 266: 1947–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Thornton SR, Smith FL. Characterization of neonatal rat fentanyl tolerance and dependence. J Pharmacol Exp Ther 1997; 281: 514–21.PubMedGoogle Scholar
  17. 17.
    Vaccarino AL, Maret P, Kest B, et al. Morphine fails to produce tolerance when administered in the presence of formalin pain in rats. Brain Res 1993; 627: 287–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Kitahata LM, Ghazi-Saidi K, Tamashita M, Kosaka T, Bonikos C, Taub A. The depressant effect of halothane and sodium thiopental on the spontaneous and evoked activity of dorsal horn cells: lamina specificity, time course and dose dependence. J Pharmacol Exp Ther 1975; 195: 515–21.PubMedGoogle Scholar
  19. 19.
    Hagihira S, Taenaka N, Yoshiya I. Inhalation anesthetics suppress the expression of c-fos protein evoked by noxious somatic stimulation in the deeper layer of the spinal cord in the rat. Brain Res 1997; 751: 124–30.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1999

Authors and Affiliations

  • Yuan-Yi Chia
    • 1
    • 2
  • Kang Liu
    • 1
    • 2
  • Jhi-Joung Wang
    • 3
  • Mei-Ching Kuo
    • 1
    • 2
  • Shung-Tai Ho
    • 3
  1. 1.Department of AnesthesiaVeterans General Hospital-KaohsiungTaiwanRepublic of China
  2. 2.Department of Anesthesiology, School of MedicineNational Yang-Ming UniversityTaipei, TaiwanR.O.C.
  3. 3.Department of AnesthesiologyTri-Service General Hospital National Defense Medical CenterTaipei, TaiwanR.O.C.

Personalised recommendations