Somatosensory evoked potentials during hypoxia and hypocapnia in conscious humans

  • John R. Ledsome
  • Colm Cole
  • Jeannie M. Sharp-Kehl
Reports of Investigation

Abstract

Purpose

The objective of the study was to evaluate the effects of moderate hypoxia and hypocapnia on the latency and amplitude of cortical somatosensory evoked potentials (SSEPs) in conscious human subjects.

Methods

In ten volunteers the amplitude and latency of the cortical somatosensory evoked potentials were recorded during stimulation of the left posterior tibial nerve. Measurements of SSEPs and respiratory variables were made breathing ambient air, air containing a reduced oxygen percentage (17% O2, 14% O2(n = 6) or 11% O2 (n = 10)), and again during voluntary hyperventilation breathing ambient air (PEtCO2 = 20 mmHg, n = 10).

Results

Hypoxia (11% O2) caused mild stimulation of ventilation (P < 0.05) but had no effects on the latency or amplitude of the SSEP. Lesser degrees of hypoxia had no effects. Hyperventilation caused a small (2–4%) decrease) in the latency of the SSEP and an increase in the amplitude of the SSEP (P< 0.05).

Conclusions

These findings in conscious subjects were consistent with previous observations in anaesthetized humans and anaesthetized dogs and show that the decrease in latency of the SSEP associated with hypocapnia is not due to changes in the depth of anaesthesia. These effects of hypocapnia may contribute to small variations in the latency of the SSEP when monitoring is performed during surgery, but are unlikely to be large enough to be of clinical concern.

Key words

Hypocapnia Hypoxia Monitoring: evoked potentials 

Résumé

Objectif

Évaluer les effets de l’hypoxie et de l’hypocapnie modérées sur la latence et l’amplitude des potentiels somatosensoriels corticaux évoqués (PSSE) chez des humains conscients.

Méthodes

Chez dix volontaires, l’amplitude et la latence des potentiels somatosensoriels corticaux évoqués ont été enregistré pendant la stimulation du nerf tibial postérieur gauche. La mesure des PSSE et des variables respiratoires a été réalisée en air ambiant, en air avec un pourcentage réduit d’oxygène (17% O2, 14% O2 (n = 6) ou 11% O2 (n = 10)) et par la suite en air ambiant pendant l’hyperventilation volontaire (PEtCO2 = 20 mmHg, n = 10).

Résultats

L’hypoxie (11% O2) a provoqué une légère stimulation de la ventilation (P < 0,05) mais n’a pas eu d’effet sur la latence et l’amplitude des PSSE. Les degrés moindres d’hypoxie n’ont pas eu d’effet. L’hyperventilation a provoqué une petite diminution (2–4%) de latence et une augmentation de l’amplitude des PSSE (P < 0,05).

Conclusion

Ces constatations chez des sujets conscients sont cohérentes avec les observations antérieures notées chez des sujets conscients et chez des chiens anesthésiés et montrent que la baisse de latence des PSSE n’est pas causée par des changements de profondeur d’anesthésie. Ces effets de l’hypocapnie peuvent contribuer à de petites variations de la latence des PSSE décelées par le monitorage en chirurgie, mais ils est peu probable qu’elles soient assez importantes pour inquiéter.

References

  1. 1.
    Loder RT, Thomson GJ, LaMont RL. Spinal cord monitoring in patients with nonidiopathic spinal deformities using somatosensory evoked potentials. Spine 1991; 16: 1359–64.PubMedCrossRefGoogle Scholar
  2. 2.
    Grundy BL, Friedman W. Electrophysiological evaluation of the patient with acute spinal cord injury. Crit Care Clin 1987; 3: 519–48.PubMedGoogle Scholar
  3. 3.
    Verroust J, Blinowska A, Vilfrit R, Couperie D, Malapert D, Perrier M. Somatosensory evoked potentials from posterior tibial nerve: normative data. Electromyogr Clin Neurophysiol 1989; 29: 299–303.PubMedGoogle Scholar
  4. 4.
    Notermans SLH, Vlek NMTh. Cortical and spinal somatosensory evoked potentials in patients suffering from lumbosacral disc prolapse. Electromyogr Clin Neurophysiol 1988; 28: 33–7.PubMedGoogle Scholar
  5. 5.
    Salzman SK, Dabney KW, Mendez AA, et al. The somatosensory evoked potential predicts neurologic deficits and serotonergic pathochemistry after spinal distraction injury in experimental scoliosis. J Neurotrauma 1988; 5: 173–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Eldridge PR, Hope DT, Yeoman PM, et al. Somatosensory evoked potentials in intracranial hypertension: analysis of the effects of hypoxia. J Neurosurg 1991; 75: 108–14.PubMedGoogle Scholar
  7. 7.
    Gravenstein MA, Sasse F, Hogan K. Effects of hypocapnia on canine spinal, subcortical, and cortical somatosensory-evoked potentials during isoflurane anesthesia. J Clin Monit 1992; 8: 126–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Schubert A, Drummond JC. The effect of acute hypocapnia on human median nerve somatosensory evoked responses. Anesth Analg 1986; 65: 240–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Ledsome JR, Cole C, Gagnon F, Susak L, Wing P. Long term stability of somatosensory evoked potentials and the effects of microgravity. Aviat Space Environ Med 1995; 66: 641–4.PubMedGoogle Scholar
  10. 10.
    Alonso JA, Hadju M, Gonzalez EG, Michelsen C. Semedei R. Cortical somatosensory evoked potentials: effects of positional changes. Arch Phys Med Rehabil 1989; 70:194–8.PubMedGoogle Scholar
  11. 11.
    Hornbein TF. The relation between stimulus to chemoreceptors and their response. In: Torrance RW (Ed.). Arterial Chemoreceptors. Oxford: Blackwell Scientific Publications, 1968: 65–78.Google Scholar
  12. 12.
    Dripps RD, Comme JH Jr. The effect of the inhalation of high and low oxygen concentrations on respiration, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals. Am J Physiol 1947; 149: 277–91.Google Scholar
  13. 13.
    McPherson RW, Zeger S, Traystman RJ. Relationship of somatosensory evoked potentials and cerebral oxygen consumption during hypoxic hypoxia in dogs. Stroke 1986; 17: 30–6.PubMedGoogle Scholar
  14. 14.
    Dietz V, Quintern J, Berger W. Afferent control of human stance and gait: evidence for blocking of group 1 afferents during gait. Exp Brain Res 1985; 61: 153–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Applegate C, Gandevia SC, Burke D. Changes in muscle and cutaneous cerebral potentials during standing. Exp Brain Res 1988;71:183–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Frankenhaeuser B, Hodgkin AL. The action of calcium on the electrical properties of squid axons. J Physiol (Lond) 1957; 137: 218–44.Google Scholar

Copyright information

© Canadian Anesthesiologists 1996

Authors and Affiliations

  • John R. Ledsome
    • 1
  • Colm Cole
    • 1
  • Jeannie M. Sharp-Kehl
    • 1
  1. 1.Departments of Physiology and AnaesthesiaUniversity of British Columbia and Microgravity Life Sciences Research Unit, Vancouver HospitalVancouverCanada

Personalised recommendations