Advertisement

Canadian Journal of Anaesthesia

, Volume 42, Issue 6, pp 547–553 | Cite as

Pulmonary resistance in dogs: a comparison of xenon with nitrous oxide

  • Ping Zhang
  • Akitoshi Ohara
  • Takashi Mashimo
  • Hidemitsu Imanaka
  • Akinori Uchiyama
  • Ikutu Yoshiya
Laboratory Investigations

Abstract

Xenon (Xe) may cause an increase in airway resistance due to its high density and viscosity. The object of this study was to examine the effects of Xe on pulmonary resistance using dog models with normal and methacholine-treated airways. During anaesthesia 22 mongrel dogs’ tracheas were intubated and the lungs were mechanically ventilated with 70% N2/30% O2 as a control gas. The gases 70% nitrous oxide (N2O), 50% N2O, 70% Xe and 50% Xe were administered in a random order for 25 min. Bronchoconstriction was produced by a continuous infusion of methacholine, 0.22 mg · kg−1 · hr−1. Pulmonary resistance (Rl) was calculated by the isovolume method using flow at the airway opening, volume and transpulmonary pressure. In normal dogs,Rl breathing 70% Xe (mean ± SEM, 0.84 ± 0.12 cm H2O · L−1 · sec−1) was greater (P < 0.05) than with 70% N2O, 50% N2O or control gas (0.61 ± 0.08, 0.59 ± 0.06 and 0.62 ± 0.06 cm H2O · L−1 sec−1). Breathing 50% Xe theRL (0.77 ± 0.10 cm H2O · L−1 · sec−1) was not different from 50% N2O or control. Methacholine infusion increasedRL 3.92 ± 1.98 (mean ± SD) times. TheRL breathing 50% Xe (2.55 ± 0.44 cm H2O · L−1 · sec−1) was not greater than during 50% N2O or control (2.08 ± 0.33 and 2.13 ± 0.33 cm H2O · L−1 · sec−1) in methacholine-treated dogs. The data suggest that inhalation of high concentrations of Xe increases airway resistance, but only to a modest extent in dogs with normal or methacholine-treated airways.

Key words

anaesthetics, gases: xenon, nitrous oxide lung: function, respiratory resistance 

Résumé

A cause de sa densité et de sa viscosité élevées, le Xénon (Xe) peut augmenter la résistance des voies aériennes. Le but de ce travail consiste à étudier les effets du Xe sur la résistance pulmonaire de chiens aux voies aériennes normales ou traitées à la méthacholine. Pendant l’anesthésie, la trachée de 22 chiens batards est intubée et les chiens sont ventilés mécaniquement avec le gaz contrôle (70% N2/30% O2). Du protoxyde d’azote (N2O) 70%, 50% N2O, 70% Xe et 50% Xe sont administrés aléatoirement pour 25 min. La bronchoconstriction est produite par une perfusion continue de méthacholine, 0,22 mg · kg−1 · hr−1. La résistance pulmonaire (Rl) est calculée selon la méthode de lïsovolume avec la mesure du débit à l’entrée des voies aériennes, du volume et de la pression transpulmonaire. Chez les chiens normaux, laRl sous 70% Xe (moyenne ± SEM, 0,84 ± 0,12 cm H2O · L−1 · sec−1) est plus élevée (P < 0,05) qu’avec 70% N2O, 50% N2O et qu’avec le gaz contrôle (0,61 ± 0,08, 0,59 ± 0,06 et 0,62 ± 0,06 cm H2O · L−1 · sec−1). Sous 50% Xe, laRl (0,77 ± 0,10 cm H2O · L−1 · sec−1) ne diffère pas du 50% N2O ou du contrôle. La perfusion de méthacholine augmente laRl 3,92 ± 1,98 (moyenne ± SD) fois. Sous 50% Xe, laRl (2,55 ± 0,44 cmH2O · L−1 · sec−1) n’est pas plus élevée que sous 50% N2O ou que sous le gaz contrôle (2,08 ± 0,33 et 2,13 ± 0,33 cmH2O · L−1 · sec−1) chez les chiens traités à la méthacholine. Ces données suggèrent que l’inhalation de hautes concentrations de Xe augmente la résistance des voies aériennes, mais modérément seulement, chez les chiens aux des voies aériennes normales ou traitées à la méthacholine.

References

  1. 1.
    Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science 1951; 113: 580–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Pittinger CB, Moyers J, Cullen SC, Featherstone RM, Gross EG. Clinicopathologic studies associated with xenon anesthesia. Anesthesiology 1953; 14: 10–7.PubMedGoogle Scholar
  3. 3.
    Morris LE, Knott JR, Pittinger CB. Electro-encephalographic and blood gas observations in human surgical patients during xenon anesthesia. Anesthesiology 1955; 16: 312–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Cullen SC, Eger EI II,Cullen BF, Gregory P. Observations on the anesthetic effect of the combination of xenon and halothane. Anesthesiology 1969; 31: 305–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Lane GA, Nahrwold ML, Tait AR, Taylor-Bush M, Cohen PJ. Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not. Science 1980; 210: 899–901.PubMedCrossRefGoogle Scholar
  6. 6.
    Cullen SC, Eger EI II,Gregory P. Use of xenon and xenon-halothane in a study of basic mechanisms of anesthesia in man. Anesthesiology 1967; 28: 243–4.CrossRefGoogle Scholar
  7. 7.
    Boomsma F, Rupreht J, Manin’t Veld AJ, de Jong FH, Dzoljic M, Lachmann B. Haemodynamic and neurohumoral effects of xenon anaesthesia. A comparison with nitrous oxide. Anaesthesia 1990; 45: 273–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Lachmann B, Armbruster S, Schairer W, et al. Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet 1990; 335: 1413–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Yogi M, Mashimo T, Kamakuchi T, Pak M, Yoshiya I. Analgesic and psychomotor effects of the subanesthetic xenon; a comparison with nitrous oxide. Anesthesiology 1991; 75: A342.CrossRefGoogle Scholar
  10. 10.
    Luttropp HH, Thomasson R, Dahm S, Persson J, Werner O. Clinical experience with minimal flow xenon anesthesia. Acta Anaesthesiol Scand 1994; 38: 121–5.PubMedGoogle Scholar
  11. 11.
    Rodarte JR. Dynamics of respiration.In: Fishman AP (Ed.). Handbook of Physiology. Bethesda, Maryland: American Physiological Society, 1986: 131–44.Google Scholar
  12. 12.
    Jaffrin MY, Kesic P. Airway resistance: a fluid mechanical approach. J Appl Physiol 1974; 36: 354–61.PubMedGoogle Scholar
  13. 13.
    Ludwig MS, Dreshaj I, Solway J, Munoz A, Ingram RH Jr. Partitioning of pulmonary resistance during constriction in the dog: effects of volume history. J Appl Physiol 1987; 62: 807–15.PubMedGoogle Scholar
  14. 14.
    Wilke CR. A viscosity equation for gas mixtures. Journal of Chemical Physics 1950; 18: 517–9.CrossRefGoogle Scholar
  15. 15.
    Amdur MO, Mead J. Mechanics of respiration in unanesthetized guinea pigs. Am J Physiol 1958; 192: 364–8.PubMedGoogle Scholar
  16. 16.
    Breen PH, Becker LJ, Ruygrok P, et al. Canine bronchoconstriction, gas trapping, and hypoxia with methacholine. J Appl Physiol 1987; 63: 262–9.PubMedGoogle Scholar
  17. 17.
    Holzgrefe HH, Everitt JM, Wright EM. Alpha-chloralose as a canine anesthetic. Lab Anim Sci 1987; 37: 587–95.PubMedGoogle Scholar
  18. 18.
    Jackson DM, Richards IM. The effects of pentobarbitone and chloralose anaesthesia on the vagal component of bronchoconstriction produced by histamine aerosol in the anaesthetized. Br J Pharmacol 1977; 61: 251–6.PubMedGoogle Scholar
  19. 19.
    Warner DO, Vettermann J, Brusasco V, Rehder K. Pulmonary resistance during halothane anesthesia is not determined only by airway caliber. Anesthesiology 1989; 70: 453–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Ludwig MS, Romero PV, Bates JHT. A comparison of the dose-response behaviour of canine airways and parenchyma. J Appl Physiol 1989; 67: 1220–5.PubMedGoogle Scholar
  21. 21.
    Ramsdell JW, Georghiou PF. Prolonged methacholineinduced bronchoconstriction in dogs. J Appl Physiol 1979; 47: 418–24.PubMedGoogle Scholar
  22. 22.
    Casthely PA, Cornell JE, Urquhart PA. Comparison of metaproterenol, salbutamol in the relief of methacholineinduced bronchospasm in dogs. Can Anaesth Soc J 1985; 32: 112–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Olson LE, Robinson NE. Propranolol-vagal-alveolar CO2 interactions on collateral gas flow in dog lungs. J Appl Physiol 1982; 52: 1426–31.PubMedGoogle Scholar
  24. 24.
    Tobias JD, Sauder RA, Hirshman CA. Methylprednisolone prevents propranolol-induced airway hyperreactivity in the basenji-greyhound dog. Anesthesiology 1991; 74: 1115–20.PubMedGoogle Scholar
  25. 25.
    Smith LJ, Inners CR, Terry PB, Menkes HA, Traystman RJ. Effects of methacholine and hypocapnia on airways and collateral ventilation in dogs. J Appl Physiol 1979; 46: 966–72.PubMedGoogle Scholar
  26. 26.
    Wood LDH, Engel LA, Griffin P, Despas P, Macklem PT. Effect of gas physical properties and flow on lower pulmonary resistance. J Appl Physiol 1976; 41: 234–44.PubMedGoogle Scholar
  27. 27.
    Douglas RB, Brown P, Knight K, Milk G, Wilson G. Effects of Entonox on respiratory function (Letter). BMJ 1974; 2: 277.PubMedCrossRefGoogle Scholar
  28. 28.
    Nemery B, Nullens W, Venter C, Brasseur L, Frans A. Effects of gas density on pulmonary gas exchange of normal man at rest and during exercise. Pflugers Arch 1983; 397: 57–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Moote CA, Knill RL, Clement J. Ventilatory compensation for continuous inspiratory resistive and elastic loads during halothane anesthesia in humans. Anesthesiology 1986; 64: 582–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Christopherson SK, Hlastala ME. Pulmonary gas exchange during altered density gas breathing. J Appl Physiol 1982; 52: 221–5.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1995

Authors and Affiliations

  • Ping Zhang
    • 1
  • Akitoshi Ohara
    • 1
  • Takashi Mashimo
    • 1
  • Hidemitsu Imanaka
    • 1
    • 2
  • Akinori Uchiyama
    • 1
    • 2
  • Ikutu Yoshiya
    • 1
  1. 1.Department of AnesthesiologyOsaka University Medical SchoolSuita City, OsakaJapan
  2. 2.Intensive Care UnitOsaka University Medical SchoolSuita City, OsakaJapan

Personalised recommendations