Canadian Journal of Anaesthesia

, Volume 41, Issue 9, pp 771–774 | Cite as

Age and the onset of desaturation in apnoeic children

  • Ramesh Patel
  • Michael Lenczyk
  • Raafat S. Hannallah
  • Willis A. McGill
Reports of Investigation

Abstract

Most patients undergoing general anaesthesia are apnoeic during laryngoscopy and tracheal intubation. This study determined the time until the onset of desaturation following preoxygenation in apnoeic infants, children, and adolescents. Fifty ASA physical status I patients, 2 days to 18 yr of age, were studied. The patients were stratified into one of five groups according to age: Group I, 0–6 mo; Group II, 7–23 mo; Group III 2–5 yr; Group IV, 6–10 yr; and Group V, 11–18 yr. Following induction of anaesthesia with halothane via mask or intravenous barbiturates, the ability of the anaesthetist to ventilate the lungs via the mask was ascertained and paralysis was accomplished with vecuronium 0.1 mg · kg−1. Manual mask ventilation was maintained with oxygen and halothane. When end-tidal N2 decreased below 3% (minimum time two minutes), the face mask was removed. The time between the removal of the face mask and a decrease in oxygen saturation (SpO2 from 99–100% to 90% was measured. Manual ventilation was then resumed and the trachea intubated. Desaturation started earlier in infants than in two-to five-year-old children (96.5 ± 12.7 sec vs 160.4 ± 30.7 sec, P < 0.0001). Children became desaturated faster than adolescents (160.4 ± 30.7 vs 382.4 ± 79.9 sec, P < 0.0001). The time required to reach 90% saturation correlated well with age by linear regression analysis (r2 = 0.88, P < 0.0001). We conclude that the time to onset of desaturation following pre-oxygenation with mask ventilation increases with age in healthy apnoeic children. Adolescents can tolerate apnoea for longer than children, and infants exhibit desaturation faster than children.

Key words

anaesthesia: paediatric ventilation: anaesthetics, effects of apnoea 

Résumé

La plupart des patients demeurent en apnée pendant la laryngoscopie et l’intubation. Cette étude précise l’intervalle qui précède la désaturation après préoxygénation chez les nouveaunés, les enfants et les adolescents. Cinquante patients ASA I, âgés de deux jours à dixhuit ans, font partie de l’étude. Les patients sont répartis en cinq groupes selon leur âge: groupe I, 0–6 mois, groupe II, 7–23 mois; groupe III, 2–5 ans; groupe IV, 6–10 ans; groupe V, 11–18 ans. Après une induction au masque à l’halothane ou aux barbituriques intraveineux, l’habileté de ventiler les poumons au masque est constatée et la paralyse initiée avec du vécuronium 0,1 mg · kg−1. La ventilation manuelle au masque est maintenue avec de l’oxygène et de l’halothane. Quand le N2 télé- expiratoire diminue sous 3% (en deux minutes au minimum), le masque est enlevé. On mesure l’intervalle entre le retrait du masque et une baisse de la saturation en oxygène (SpO2 de 99–100% à 90%. On reprend la ventilation manuelle et la trachée est intubée. La désaturation débute plus rapidement dans les deux premiers groupes que chez les enfants de deux à cinq ans (96,5 ± 12,7 s vs 160,4 ± 30,7 s, P< 0,0001). Les enfants désaturent plus rapidement que les adolescents (160,4 ± 30,7 vs 382,4 ± 79,9 s, P < 0,0001). Le temps nécessaire à l’atteindre 90% de désaturation présente une bonne corrélation avec l’âge comme le montre l’analyse de régression linéaire (r2 = 0,88, P < 0,0001). Nous concluons que l’intervalle qui précède la désaturation après la préoxygénation avec ventilation au masque augmente avec l’âge chez les enfants apnéiques en bonne santé. Les adolescents peuvent tolérer l’apnée plus longtemps que les enfants et les nourissons se désaturent plus rapidement que les enfants.

References

  1. 1.
    Videira RLR, Neto PPR, Gomide DO, Amarlal RV, Freeman JA. Preoxygenation in children: for how long? Acta Anaesthesiol Scand 1992; 36: 109–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Gold ML Preoxygenation (Editorial). Br J Anaesth 1989; 62: 241–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Gambee AM, Hertzka RE, Fisher DM. Preoxygenation techniques: comparison of three minutes and four breaths. Anesth Analg 1987; 66: 468–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Gerhardt T, Reifenberg L, Hehre D, Feller R, Bancalari E. Functional residual capacity in normal neonates and children up to 5 years of age determined by a N2 washout method. Pediatr Res 1986; 20: 668–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Thorsteinsson A, Jonmarker C, Larsson A, Vilstrup C, Werner O. Functional residual capacity in anesthetized children: normal values and values in children with cardiac anomalies. Anesthesiology 1990; 73: 876–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Bar-Yishay E, Shulman DL, Beardsmore CS, Godfrey S. Functional residual capacity in healthy preschool children lying supine. Am Rev Respir Dis 1987; 135: 954–6.PubMedGoogle Scholar
  7. 7.
    Lindahl SGE. Oxygen consumption and carbon dioxide elimination in infants and children during anaesthesia and surgery. Br J Anaesth 1989; 62: 70–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Schieber RA. Cardiovascular physiology in children.In: Motoyama EK, Davis PJ (Eds.). Smith’s Anesthesia for Infants and Children, 5th ed., St. Louis: CV Mosby Co., 1990; 77–104.Google Scholar
  9. 9.
    Polgar G, Weng TR. The functional development of the respiratory system: from the period of gestation to adulthood. Am Rev Respir Dis. 1979; 120: 625–95.PubMedGoogle Scholar
  10. 10.
    Kinouchi K, Tanigami H, Tashiro C, Nishimura M, Fukumitsu K, Takauchi Y. Duration of apnoea in anesthetized infants and children required for desaturation of hemoglobin to 95%. Anesthesiology 1992; 77: 1105–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Coté CJ, Goldstein EA, Coté MA, Hoaglin DC, Ryan JF. A single-blind study of pulse oximetry in children. Anesthesiology 1988; 68: 184–8.PubMedGoogle Scholar
  12. 12.
    Coté CJ, Rolf N, Liu LMP, et al. A single-blind study of combined pulse oximetry and capnography in children. Anesthesiology 1991; 74: 980–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Motoyama EK, Glazener CH. Hypoxemia after general anesthesia in children. Anesth Analg 1986; 65: 267–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Pullerits J, Burrows FA, Roy WL. Arterial desaturation in healthy children during transfer to the recovery room. Can J Anaesth 1987; 34: 470–3.PubMedGoogle Scholar
  15. 15.
    Vijayakumar HR, Metriyakool K, Jewell MR. Effects of 100% oxygen and a mixture of oxygen and air on oxygen saturation in the immediate postoperative period in children. Anesth Analg 1987; 66: 181–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Jense HG, Dubin SA, Silverstein PI, O’Leary-Escolas U. Effect of obesity on safe duration of apnea in anesthetized humans. Anesth Analg 1991; 72: 89–93.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1994

Authors and Affiliations

  • Ramesh Patel
    • 1
  • Michael Lenczyk
    • 1
  • Raafat S. Hannallah
    • 1
  • Willis A. McGill
    • 1
  1. 1.Department of AnesthesiologyChildren’s National Medical Center and George Washington University Medical CenterWashington, D.C.USA

Personalised recommendations