Advertisement

Canadian Journal of Anaesthesia

, Volume 42, Issue 9, pp 758–764 | Cite as

Midazolam for caudal analgesia in children: comparison with caudal bupivacaine

  • Mohamed Naguib
  • Mohamed El Gammal
  • Yasser S. Elhattab
  • Mohamed Seraj
Reports of Investigation

Abstract

In a randomized, double-blind study we have examined the analgesic efficacy of caudal administration of midazolam, bupivacaine, or a mixture of both drugs in 45 children, undergoing inguinal herniotomy. They were allocated randomly into three groups (n = 15 in each) to receive a caudal injection of either 0.25% bupivacaine 1 ml · kg−1 with or without midazolam 50 μg · kg−1 or midazolam 50 μg · kg−1 with normal saline 1 ml · kg−1. There were no differences in quality of pain relief, postoperative behaviour or analgesic requirements between the midazolam group and the other two groups. Times to first analgesic administration (paracetamol suppositories) were longer (P < 0.001) in the bupivacaine-midazolam group than in the other two groups. Further, the bupivacaine-midazolam group received fewer (P < 0.05) doses of paracetamol than the bupivacaine group. Side effects such as motor weakness, respiratory depression or prolonged sedation were not observed in patients who received caudal epidural midazolam only. We conclude that caudal midazolam in a dose of 50 μg · kg−1 provides equivalent analgesia to bupivacaine 0.25%, when administered postoperatively in a volume of 1 ml · kg−1 for children following unilateral inguinal hemiotomy.

Key words

analgesia: paediatric, postoperative anaesthetic techniques: caudal anaesthetic, local: bupivacaine hypnotics: benzodiazepines, midazolam 

Résumé

Cette étude randomisée et à double aveugle évalue l’efficacité analgésique du midazolam, de la bupivacaïne ou du mélange de ces deux produits administrés par la voie caudale chez 45 enfants soumis à une herniotomie inguinale. Ils sont répartis en trois groupes (n = 15) pour recevoir une injection caudale contenant soit de bupivacaïne 0,25% 1 ml · kg−1 avec ou sans midazolam 50 μg · kg−1, soit de midazolam 50 μg · kg avec du soluté physiologique 1 ml · kg−1. Nous ne notons pas de différence pour ce qui est de la qualité de l’analgésie, du comportement postopératoire et des besoins en analgésiques entre le groupe midazolam et les deux autres groupes. L’intervalle précédant la première administration d’un analgésique (du paracétamol en suppositoire) est plus long (P < 0,001) pour le groupe bupivacaïne-midazolam que pour les deux autres groupes. De plus, nous administrons moins souvent (P < 0,05) de paracétamol au groupe bupivacaïne-midazolam qu’an groupe bupivacaïne. Nous concluons que le midazolam caudal à la dose de 50 μg · kg−1 produit une analgésie équivalente à la bupivacaïne 0,25% lorsqu’il est administré à des enfants à la période postopératoire dans un volume de 1 ml · kg−1 après une herniotomie inguinale.

References

  1. 1.
    Loyd-Thomas AR. Pain management in paediatric patients. Br J Anaesth 1990; 64: 85–104.CrossRefGoogle Scholar
  2. 2.
    Naguib M, Sharif AMY, Seraj M, El Gammal M, Dawlatly AA. Ketamine for caudal analgesia in children: comparison with caudal bupivacaine. Br J Anaesth 1991; 67: 559–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Desparmet JE. Total spinal anesthesia after caudal anesthesia in an infant. Anesth Analg 1990; 70: 665–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Krane EJ, Tyler DC, Jacobson LE. The dose response of caudal morphine in children. Anesthesiology 1989; 71: 48–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Krane EJ. Delayed respiratory depression in a child after caudal epidural morphine. Anesth Analg 1988; 67: 79–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Racle JP, Benkhadra A, Poy JY, Gleizal B. Prolongation of isobaric bupivacaine spinal anesthesia with epinephrine and clonidine for hip surgery in the elderly. Anesth Analg 1987; 66: 442–6.PubMedGoogle Scholar
  7. 7.
    Lee JJ, Rubin AP. Comparison of a bupivacaine-clonidine mixture with plain bupivacaine for caudal analgesia in children. Br J Anaesth 1994; 72: 258–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Möhler H, Okada T. Benzodiazepine receptor: demonstration in the central nervous system. Science 1977; 198: 849–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Doble A, Martin IL. Multiple benzodiazepine receptors: no reason for anxiety. Trends Pharmacol Sci 1992; 13: 76–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Möhler H, Okada T. The benzodiazepine receptor in normal and pathological human brain. Br J Psychiatry 1987; 133: 261–68.CrossRefGoogle Scholar
  11. 11.
    Unnerstall JR, Kuhar MJ, Niehoff DL, Palacios JM. Benzodiazepine receptors are coupled to a subpopulation γ-aminobutyric acid (GABA) receptors: evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther 1981; 218: 797–804.PubMedGoogle Scholar
  12. 12.
    Nistri A, Berti C. Influence of benzodiazepines of GABA-evoked responses of amphibian brain and spinal neuronsin vitro. Neuropharmacology 1984; 23: 851–2.CrossRefGoogle Scholar
  13. 13.
    Niv D, Whitwam JG, Loh L. Depression of nociceptive sympathetic reflexes by the intrathecal administration of midazolam. Br J Anaesth 1983; 55: 541–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Serrao JM, Stubbs SC, Goodchild CS, Gent JP. Intrathecal midazolam and fentanyl in the rat: evidence for different spinal antinociceptive effects. Anesthesiology 1989; 70: 780–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Yanez A, Sabbe MB, Stevens CW, Yaksh TL. Interaction of midazolam and morphine in the spinal cord of the rat. Neuropharmacology 1990; 29: 359–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Rigoli M. Epidural analgesia with benzodiazepines.In: Tiengo M, Cousins MJ (Eds.). Pharmacological Basis of Anesthesiology: Clinical Pharmacology of New Analgesics and Anesthetics. New York: Raven Press, 1983: 69–76.Google Scholar
  17. 17.
    Goodchild CS, Noble J. The effects of intrathecal midazolam on sympathetic nervous system reflexes in man — a pilot study. Br J Clin Pharmacol 1987; 23: 279–85.PubMedGoogle Scholar
  18. 18.
    Nishiyama T, Odaka Y, Hirasaki A, Seto K. Epidural midazolam for treatment of postoperative pain. Masui 1991; 40: 1353–8.PubMedGoogle Scholar
  19. 19.
    Serrao JM, Marks RL, Morley SJ, Goodchild CS. Intrathecal midazolam for the treatment of chronic mechanical low back pain: a controlled comparison with epidural steroid in a pilot study. Pain 1992; 48: 5–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Schoeffler P, Auroy P, Bazin JE, Taxi J, Woda A. Subarachnoid midazolam: histologic study in rats and report of its effect on chronic pain in humans. Reg Anesth 1991; 16: 329–32.PubMedGoogle Scholar
  21. 21.
    Auroy P, Schoeffler P, Maillot C, Haberer JP, Woda A. Tolérance intrathécale du midazolam. Etude histologique. Ann Fr Anesth Reanim 1988; 7: 81–2.PubMedGoogle Scholar
  22. 22.
    Broadman LM, Hannallah RS, Belman AB, Elder PT, Ruttimann U, Epstein BS. Post-circumcision analgesia — a prospective evaluation of subcutaneous ring block of the penis. Anesthesiology 1987; 67: 399–402.PubMedCrossRefGoogle Scholar
  23. 23.
    Fell D, Derrington MC, Taylor E, Wandless JC. Paediatric postoperative analgesia. A comparison between caudal block and wound infiltration of local anaesthetic. Anaesthesia 1988; 43: 107–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Hunkeler W, Möhler H, Pieri L, et al. Selective antagonists of benzodiazepines. Nature 1981; 290: 514–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Haefely WE. Benzodiazepines. Int Anesthesiol Clin 1988; 26: 262–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Cheng S-C, Brunner EA. Inhibition of GABA metabolism in rat brain synaptosomes by midazolam (RO-21-3981). Anesthesiology 1981; 55: 41–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Haefely W, Polc P. Physiology of GABA enhancement by benzodiazepines and barbiturates.In: Olsen RW, Venter JC (Eds.). Benzodiazepine/ GABA Receptors and Chloride Channels: Structural and Functional Properties. New York: Liss, 1986: 97–133.Google Scholar
  28. 28.
    Nishiyama T, Hirasaki A, Odaka Y, Konishi H, Seto K, Goto I. Epidural midazolam with saline — optimal dose for postoperative pain. Masui 1992; 41: 49–54.PubMedGoogle Scholar
  29. 29.
    Dickenson AH, Sullivan AF. Subcutaneous formalininduced activity of dorsal horn neurones in the rat: differential response to an intrathecal opiate administered pre or post formalin. Pain 1987; 30: 349–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Woolf CJ. Recent advances in pathophysiology of acute pain. Br J Anaesth 1989; 63: 139–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Dierking GW, Dahl JB, Kanstrup J, Dahl A, Kehlet H. Effect of pre-vs postoperative inguinal field block on postoperative pain after herniorrhaphy. Br J Anaesth 1992; 68: 344–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Dahl JB, Hansen BL, Hjortsø NC, Erichsen CJ, Møniche S, Kehlet H. Influence of timing on the effect of continuous extradural analgesia with bupivacaine and morphine after major abdominal surgery. Br J Anaesth 1992; 69: 4–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Pryle BJ, Vanner RG, Enriquez N, Reynolds F. Can preemptive lumber epidural blockade reduce postoperative pain following lower abdominal surgery? Anaesthesia 1993; 48: 120–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Holthusen H, Eichwede F, Stevens M, Willnow U, Lipfert P. Pre-emptive analgesia: comparison of preoperative with postoperative caudal block on postoperative pain in children. Br J Anaesth 1994; 73: 440–2.PubMedCrossRefGoogle Scholar
  35. 35.
    Woolf CJ, Chong M-S. Preemptive analgesia — treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 1993; 77: 362–79.PubMedCrossRefGoogle Scholar
  36. 36.
    Abouleish E, Rawal N, Shaw J, Lorenz T, Rashad N. Intrathecal morphine 0.2 mgversus epidural bupivacaine 0.125% or their combination: effects on parturients. Anesthesiology 1991; 74: 711–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Abboud TK, Afrasiabi A, Zhu J, et al. Epidural morphine or butorphanol analgesia during labor. Reg Anesth 1989; 14: 115–20.PubMedGoogle Scholar
  38. 38.
    Tejwani GA, Rattan AK, McDonalds JS. Role of spinal opioid receptors in the antinociceptive interactions between intrathecal morphine and bupivacaine. Anesth Analg 1992; 74: 726–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Loper KA, Ready LB, Downey M, et al. Epidural and intravenous fentanyl infusions are clinically equivalent after knee surgery. Anesth Analg 1990; 70: 72–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Badner NH, Reimer EJ, Komar WE, Moote CA. Lowdose bupivacaine does not improve postoperative epidural fentanyl analgesia in orthopedic patients. Anesth Analg 1991; 72: 337–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Wolf AR, Valley RD, Fear DW, Roy WL, Lerman J. Bupivacaine for caudal analgesia in infants and children: the optimal effective concentration. Anesthesiology 1988; 69: 102–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Malinovsky J-M, Cozian A, Lepage J-Y, Mussini J-M, Pinaud M, Souron R. Ketamine and midazolam neurotoxicity in the rabbit. Anesthesiology 1991; 75: 91–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Rigler ML, Drasner K, Krejcie TC, et al. Cauda equina syndrome after continuous spinal anesthesia. Anesth Analg 1991; 72: 275–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Drasner K. Models for local anesthetic toxicity from continuous spinal anesthesia. Reg Anesth 1993; 18; 434–8.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1995

Authors and Affiliations

  • Mohamed Naguib
    • 1
  • Mohamed El Gammal
    • 1
  • Yasser S. Elhattab
    • 1
  • Mohamed Seraj
    • 1
  1. 1.Department of Anaesthesia and ICUKing Saud University, Faculty of Medicine at King Khalid University HospitalSaudi Arabia

Personalised recommendations