Advertisement

Canadian Journal of Anaesthesia

, Volume 42, Issue 11, pp 1003–1009 | Cite as

Differential effects of ketamine and midazolam on heart rate variability

  • Toru Komatsu
  • Prabhat K. Singh
  • Tomomasa Kimura
  • Kimitoshi Nishiwaki
  • Kenji Bando
  • Yasuhiro Shimada
Reports of Investigation

Abstract

Alterations in autonomic activity caused by anaesthesia can be assessed by spectral analysis of heart rate variability (HRV). This study examined the effects of ketamine and midazolam on HRV. Thirty patients of ASA PS 1 were studied. Fifteen were given ketamine (2 mg · kg−1) and 15 received midazolam (0.3 mg · kg−1), m The RR intervals of ECG were measured before and after induction of anaesthesia for ten minutes during spontaneous respiration. Power spectral density of the data was computed using fast Fourier transform. The spectral peaks within each measurement were calculated: low frequency area (LF, 0.04–0.15 Hz), high frequency area (HF, 0.15–0.5 Hz), and total power (TP, 0.04–0.5 Hz). Normalized unit power was derived as follows: low frequency area (nuLF): LF/ TP × 100%, high frequency area (nuHF): HF/TP × 100%. Both ketamine and midazolam caused reductions in all measurements of HRV power (P < 0.05). However, ketamine increased nuLF from 64 ± 14% to 75 ± 13% (P < 0.05) and decreased nuHF from 36 ± 14% to 25 ± 13% (P < 0.05), while midazolam decreased nuLF from 66 ± 15% to 54 ± 14% (P < 0.05) and increased nuHF from 34 ± 15% to 46 ± 14% (P < 0.05). These results documented that both ketamine and midazolam reduced the total power and all frequency components of power in spite of their opposing effects on autonomic nervous activity. However, normalized unit power showed the expected sympathetic activation with ketamine and sympathetic depression with midazolam since ketamine increased nuLFand midazolam decreased nuLF.

Key words

anaesthetics: intravenous, ketamine, midazolam autonomic nervous system: sympathetic, parasympathetic measurement techniques: heart rate variability spectral analysis, normalized unit power 

Résumé

Il est possible de mesurer l’activité autonome initiée par l’anesthésie au moyen de l’analyse spectrale des fluctuations de la fréquence cardiaque (FFC). Cette étude recherche les effets de la kétamine et du midazolam sur les FFC. Trente patients ASA PS I font partie de l’étude. Quinze ont reçu de la kétamine (2 mg · kg−1) et quinze du midazolam (0,3 mg · kg−1) iv. Les intervalles RR ont été mesurés à l’ECG avant et après l’induction de l’anesthésie pendant dix minutes de respiration spontanée. La densité de la puissance spectrale des données a été calculée après transformation rapide sur une échelle de Fourier. Les pointes spectrales de chaque mesure ont été calculées: zone de basse fréquence (LF, 0.04–0,15 Hz), zone de haute fréquence (HF, 0,15–0.5 Hz) et puissance totale (TP, 0,04–0,5 Hz). L’unité de puissance normalisée a été dérivee comme suit: zone de basse fréquence (nuLF): LF/TP × 100%, zone de haute fréquence (nuHF): HF/TP × 100% La kétamine et le midazolam provoquent des réductions de toutes les mesures de puissance des FFC (P < 0,05). Cependant la kétamine a augmenté nuLF de 64 ± 14% à 75 ± 13% (P < 0,05) et a diminue nuHF de 36 ± 14% à 25 ± 13% (P < 0,05), alors que le midazolam a diminué nuLF de 66 ± 14% à 54 ± 14% (P < 0,05) et a augmenté nuHF de 34 ± 15% à 46 ± 14% (P < 0,05). Ces résultats montrent que la kétamine et le diazépam réduisent tous deux la puissance totale et toutes les composantes fréquentielles de la puissance malgré leurs effets opposés sur l’activité nerveuse autonome. Cependant, l’unité de puissance normalisée a montré, comme on s’y attendait, l’activation sympathique par la kétamine et la dépression sympathique par le midazolam étant donné que la kétamine augmentait nuLF et que le midazolam diminuait nuLF.

References

  1. 1.
    Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 1986; 59: 178–93.PubMedGoogle Scholar
  2. 2.
    Kato M, Komatsu T, Kimura T, Sugiyama F, Nakashima K, Shimada Y. Spectral analysis of heart rate variability during isoflurane anesthesia. Anesthesiology 1992; 77: 669–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Komatsu T, Kimura T, Sanchala V, Shibutani K, Shimada Y. Effects of fentanyl-diazepam-pancuronium anesthesia on heart rate variability, a spectral analysis. J Cardiothoracic Vase Anesth 1992; 6:444–8.CrossRefGoogle Scholar
  4. 4.
    Latson TW, McCarroll SM, Mirhej MA, Hyndman VA, Whitten CW, Lipton JM. Effects of three anesthetic induction techniques on heart rate variability. J Clin Anesth 1992; 4: 265–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Scheffer GJ, Ten Voorde BJ, Karemaker JM, Ros HH, De Lange JJ. Effects of thiopentone, etomidate and propofol on beat-to-beat cardiovascular signals in man. Anaesthesia 1993; 48: 849–55.PubMedCrossRefGoogle Scholar
  6. 6.
    White PF, Way WL, Trevor AJ. Ketamine — its pharmacology and therapeutic uses. Anesthesiology 1982; 56: 119–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Marty J, Gauzit R, Lefevre P, et al. Effects of diazepam and midazolam on baroreflex control of heart rate and on sympathetic activity in humans. Anesth Analg 1986; 65: 113–9.PubMedGoogle Scholar
  8. 8.
    de Boer RW, Karemaker JM, Strackee J. Description of heart-rate variability data in accordance with a physiological model for the genesis of heartbeats. Psychophysiology 1985; 22: 147–55.CrossRefGoogle Scholar
  9. 9.
    Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482–92.PubMedGoogle Scholar
  10. 10.
    Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation investigation by spectral analysis. Am J Physiol 1985; 249: H867-H875.PubMedGoogle Scholar
  11. 11.
    Pomeranz B, Macaulay RJB, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248: H151-H153.PubMedGoogle Scholar
  12. 12.
    Pagani M, Somers V, Furlan R, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 1988; 12: 600–10.PubMedGoogle Scholar
  13. 13.
    Pagani M, Mazzuero G, Ferrari A, et al. Sympathovagal interaction during mental stress. Circulation 1991; 83 (suppl II): H-43–H-51.Google Scholar
  14. 14.
    Saul JP, Rea RF, Eckberg DL, Berger RD, Cohen RJ. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am J Physiol 1990; 258: H713-H721.PubMedGoogle Scholar
  15. 15.
    Levy MN. Sympathetic-parasympathetic interactions in the heart. Cir Res 1971; 29: 437–45.Google Scholar
  16. 16.
    Ivankovich AD, Miletich DJ, Reimam C, Albrecht RF, Zahed B. Cardiovascular effects of centrally administered ketamine in goats. Anesth Analg 1974; 53: 924–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Kero P, Antila K, Ylitalo V, Välimäki I. Decreased heart rate variation in decerebration syndrome: quantitative clinical criterion of brain death? Pediatrics 1978; 62: 307–11.PubMedGoogle Scholar
  18. 18.
    Lowensohn RI, Weiss M, Hon EH. Heart-rate variability in brain-damaged adults. Lancet 1977; 192: 626–8.CrossRefGoogle Scholar
  19. 19.
    Shimoji K, Fujioka H, Fukazawa T, Hashiba M, Maruyama Y Anesthetics and excitatory inhibitory responses of midbrain reticular neurons. Anesthesiology 1984; 61: 151–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Corssen G, Domino EF. Dissociative anesthesia: further pharmologic studies and first clinical experience with the phencyclidine derivation CI-581. Anesth Analg 1966; 45: 29–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamamura T, Kimura T, Furukawa K, Effects of halothane, thiamylal, and ketamine on central sympathetic and vagal tone. Anesth Analg 1983; 62: 129–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol 1993; 75: 2310–7.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1995

Authors and Affiliations

  • Toru Komatsu
    • 1
  • Prabhat K. Singh
    • 1
  • Tomomasa Kimura
    • 1
  • Kimitoshi Nishiwaki
    • 1
  • Kenji Bando
    • 1
  • Yasuhiro Shimada
    • 1
  1. 1.Department of AnesthesiologyNagoya University School of MedicineShowaku, NagoyaJapan

Personalised recommendations