Canadian Journal of Anaesthesia

, Volume 42, Issue 3, pp 234–239 | Cite as

Technology assessment of anaesthesia monitors: problems and future directions

  • Robert J. Byrick
  • Marsha M. Cohen
Special Article

Abstract

Specific factors have limited the interpretation of studies regarding the efficacy, effectiveness and efficiency of technology in anaesthesia. Some of these problems are reviewed, including the lack of specific outcomes necessitating the use of intermediate measures (e.g., hypoxaemia, myocardial ischaemia), which are not necessarily related to ultimate patient outcomes. This emphasizes the need for anaesthesia investigators to define fundamental issues specifically and design studies accordingly. With respect to anaesthesia monitors, the “lead time” or early warning provided by a monitor relative to that required to alter therapy effectively needs to be defined better and compared with the “lead time” without the monitor. After defining the benefit of a monitor, investigators should analyze the cost relative to alternatives (cost-benefit and cost-effectiveness). A hierarchical model to guide technology assessment is presented that addresses in order, the scientific basis of the technology, and the influence on the patient followed by societal issues. Anaesthetists have relied on traditional methods of technology assessment adopted from other disciplines. These methodologies do not address specific issues related to anaesthesia practice (such as “lead time”). In defining problems specific to the specialty of anaesthesia, new outcome measures that focus on the human factors related to decision-making in the operating room need to be developed. Future evaluations of anaesthesia technology require innovative approaches that address specific anaesthesia-related problems. One such approach is the use of simulation-based studies of response patterns to critical incidents.

Key words

Monitoring 

Résumé

En anesthésie, certains facteurs spécifiques limitent l’interprétation des études portant sur l’efficacité, le rendement et la productivité de la technologie. Certains de ces problèmes sont passés en revue, en particulier l’absence de résultats spécifiques nécessitant l’utilisation de mesures intermédiaires (par ex., l’hypoxémie, l’ischémie myocardique) qui ne sont pas en rapport direct avec le devenir ultime des patients. Ceci souligne pour l’anesthésie le besoin de chercheurs orientés vers la définition des problèmes fondamentaux et l’élaboration subséquente d’études appropriées. Au regard des moniteurs, le délai de réaction (ou la rapidité de l’alarme produite) d’un moniteur comparé au temps requis pour modifier efficacement un traitement doit être mieux défini et comparé au délai de réaction enregistré sans moniteur. Après avoir défini le bienfait d’un moniteur, les chercheurs doivent en analyser le coût relatif avec ses alternatives (coût-bénéfice et coût-efficacité). Un modèle hiérarchique servant à guider l’évaluation de la technologie est présenté dans l’ordre suivant: la base scientifique de la technologie et son importance sur le patient suivies par des problèmes sociétaux. Traditionnellement, les anesthésistes ont eu recours aux méthodes d’évaluation technologique adoptées par d’autres disciplines. Cette méthodologie ne s’adresse pas aux problèmes spécifiques à la discipline d’anesthésie (comme le délai de réaction). En définissant les problèmes spécifiques à l’anesthésie, il faut développer des nouvelles mesures de résultats qui mettront l’accent sur les facteurs humains qui influencent la prise de décision en salle d’opération. A l’avenir, les évaluations de la technologie nécessiteront des approches innovatrices qui s’adresseront aux problèmes spécifiques à l’anesthésie. Une telle approche comprend l’utilisation de la simulation des types de réponses aux incidents graves.

References

  1. 1.
    Tuman KJ, Ivankovich AD. High-cost, high-tech medicine: are we getting our money’s worth? J Clin Anesth 1993: 5: 168–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Rettig RA. Technology assessment — an update. Invest Radiol 1991; 26: 165–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Brook RH, Lohr KN. Efficacy, effectiveness, variations, and quality: boundary-crossing research. Med Care 1985; 23: 710–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Orkin FK, Cohen MM, Duncan PG. The quest for meaningful outcomes (Editorial). Anesthesiology 1993; 78: 417–22.PubMedGoogle Scholar
  5. 5.
    Duncan PG, Cohen MM. Pulse oximetry and capnography in anaesthetic practice: an epidemiological appraisal. Can J Anaesth 1991; 38: 619–25.PubMedGoogle Scholar
  6. 6.
    Orkin FK. Patient monitoring during anesthesia as an exercise in technology assessment.In: Saidman LJ, Smith NT (Eds.). Monitoring in Anesthesia, 3rd ed. Boston: Butterworth-Heinemann, 1993; 439–55.Google Scholar
  7. 7.
    Coté CJ, Goldstein EA, Coté MA, Hoaglin DC, Ryan JF. A single-blind study of pulse oximetry in children. Anesthesiology 1988; 68: 184–8.PubMedGoogle Scholar
  8. 8.
    Keats AS. Anesthesia mortality in perspective. Anesth Analg 1990; 71: 113–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen MM, Duncan PG, Tweed WA, et al. The Canadian four-centre study of anaesthetic outcomes: I. Description of methods and populations. Can J Anaesth 1992; 39: 420–9.PubMedGoogle Scholar
  10. 10.
    Cohen MM, Duncan PG, Tate RB. Does anesthesia contribute to operative mortality? JAMA 1988; 260: 2859–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Lunn JN, Devlin HB. Lessons from the confidential inquiry into perioperative deaths in three NHS regions. Lancet 1987; 2: 1384–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Canadian Anaesthetists’ Society, Members’ Guide 1993. Guidelines to the Practice of Anaesthesia: as recommended by the Canadian Anaesthetists’ Society. Can J Anaesth 1993; 40: 10.Google Scholar
  13. 13.
    Moller JT, Pederson T, Rasmussen LS, et al. Randomized evaluation of pulse oximetry in 20,802 patients. I. Design, demography, pulse oximetry failure rate, and overall complication rate. Anesthesiology 1993; 78: 436–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Moller JT, Johannessen NW, Espersen K, et al. Randomized evaluation of pulse oximetry in 20,802 patients. II. Perioperative events and postoperative complications. Anesthesiology 1993; 78: 445–53.PubMedGoogle Scholar
  15. 15.
    Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making 1991; 11: 88–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Naylor CD, Williams JI, Basinski A, Goel V. Technology assessment and cost-effectiveness analysis: misguided guidelines? Can Med Assoc J 1993; 148: 921–4.Google Scholar
  17. 17.
    White PF, Watcha MF. Are new drugs cost-effective for patients undergoing ambulatory surgery? (Editorial) Anesthesiology 1993; 78: 2–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Premier’s council on health, well-being and social justice. Health for all Ontarians. A provincial dialogue on the determinants of health. Queen’s printer for Ontario, 1994.Google Scholar
  19. 19.
    Guadagnoli E, McNeil BJ. Outcomes research: hope for the future or the latest rage? Inquiry 1994; 31: 14–24.PubMedGoogle Scholar
  20. 20.
    Hudson RJ, Friesen RM. Health care ‘reform’ and the costs of anaesthesia (Editorial). Can J Anaesth 1993; 40: 1120–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Sandberg SI, Barnes BA, Weinstein MC, Braun P. Elective hysterectomy: benefits, risks, and costs. Med Care 1985; 23: 1067–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Gaba D, DeAnda A. A comprehensive anesthesia simulation environment: re-creating the operating room for research and training. Anesthesiology 1988; 69: 387–94.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1995

Authors and Affiliations

  • Robert J. Byrick
    • 1
  • Marsha M. Cohen
    • 1
  1. 1.Department of Anaesthesia, St. Michael’s Hospital and the Clinical Epidemiology Unit, Sunnybrook Health Science CentreUniversity of TorontoToronto

Personalised recommendations