Improved peribulbar anaesthesia with alkalinization and hyaluronidase

  • Jeffrey E. Roberts
  • Bernard A. MacLeod
  • Raymond H. Hollands
Reports of Investigation


A prospective double-blind randomized study was carried out to determine the effect ofpH and the addition of hyaluronidase to a mixture of lidocaine and bupivacaine on the efficacy of peribulbar anaesthesia. One hundred patients were assigned to one of five groups. All groups received a solution of two parts bupivacaine (0.75%) and one part lidocaine (2%) (with 1:100,000 adrenaline) as the base components of their anaesthesia. Group 1 received only the bupivacaine-lidocaine mixture, pH 3.9. Group 2 received a solution supplemented with hyaluronidase (ten units · ml−1), pH of 5.1. Group 3 received the bupivacaine-lidocaine mixture alkalinized with sodium bicarbonate to a pH of 5.1, the same as solution 2. Group 4 received the mixture with hyaluronidase alkalinized to pH of 6.7. Group 5 received the bupivacaine-lidocaine mixture alkalinized to a pH of 6.7. Efficacy of each block was graded according to the degree of residual movement 30 min following injection, as described by House et al1. The solution containing hyaluronidase and pH adjusted to 6.7 was found to be the most effective (P < 0.025). The presence of hyaluronidase without alkalinization did not improve the efficacy of the mixture; and similarly, alkalinization in the absence of hyaluronidase was ineffective. These results reflected the pH- and temperaturedependent thermodynamic properties of local anaesthetics, and the pH-dependent activity of hyaluronidase.

Key words

anaesthetic techniques: regional, peribulbar anaesthetics, local: lidocaine, bupivacaine enzymes: hyaluronidase 


Une étude randomisée et à double insu est réalisée dans le but de déterminer l’effet du pH et de l’ajout d’hyaluronidase à un mélange de lidocaine et de bupivacaïne sur l’efficacité de l’anesthésie péribulbaire. Cent patients sont répartis en cinq groupes. Tous les groupes recoivent une solution de deux parties de bupivacaïne (0,75%) et d’une partie de lidocaïne (2%) adrénalinées à 1:100,000 comme agent de base. Le groupe 1 ne reçoit que le mélange bupivacaïne-lidocaïne à pH 3,9. Le groupe 2 reçoit la solution supplémentée d’hyaluronidase (10 u · ml−1) à pH 5,1. Le groupe 3 reçoit le mélange bupivacaïne-lidocaïne alcalinisé au bicarbonate de soude pour porter le pH à 5,1 comme la solution 2. Le groupe 4 reçoit le mélange supplémenté d’hyaluronidase alcalinisé au pH de 6,7. Le groupe 5 reçoit le mélange bupivacaïne-lidocaïne alcalinisé au pH 6,7. L’efficacité de chaque bloc est cotée selon le degré des mouvements résiduels 30 min après l’injection, selon la méthode de House et al1. La solution contenant de l’hyaluronidase avec un pH ajusté à 6,7 a été trouvée la plus efficace (P < 0,025). La présence d’hyaluronidase sans alcalinisation n’améliore pas l’efficacité du mélange et de la même façon, l’alcalinisation sans hyaluronidase n’améliore pas l’efficacité du mélange. L’alcalinisation en absence d’hyaluronidase n’est pas efficace. Ces résultats reflètent les propriétés thermodynamiques dépendantes du pH et de la températures des anesthésiques locaux, et l’activité de l’hyaluronidase elle-même dependante du pH.


  1. 1.
    House PH, Hollands RH, Schulzer M. Choice of anaesthetic agents for peribulbar anethesia. J Cataract Refract Surg 1991; 17: 80–3.PubMedGoogle Scholar
  2. 2.
    Zahl K, Jordan A, McGroarty J, Sorensen B, Gotta AW. Peribulbar anesthesia. Effect of bicarbonate on mixtures of lidocaine, bupivacaine, and hyaluronidase with or without epinephrine. Ophthalmology 1991; 98: 239–42.PubMedGoogle Scholar
  3. 3.
    Zahl K, Jordan A, McGroarty J, Gotta AW. pH-adjusted bupivacaine and hyaluronidase for peribulbar block. Anesthesiology 1990; 72: 230–2.PubMedCrossRefGoogle Scholar
  4. 4.
    McMorland GH, Douglas MJ, Jeffrey WK, et al. Effect of pH-adjustment of bupivacaine on onset and duration of epidural analgesia in parturients. Can Anaesth Soc J 1986; 33: 537–41.PubMedGoogle Scholar
  5. 5.
    Coventry DM, Todd JG. Alkalinization of bupivacaine for sciatic nerve blockade. Anaesthesia 1989; 44: 467–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Hilgier M. Alkalinization of bupivacaine for brachial plexus block. Reg Aesth 1985; 10: 59–61.Google Scholar
  7. 7.
    Bedder MD, Kozody R, Craig DB. Comparison of bupivacaine and alkalinized bupivacaine in brachial plexus anesthesia. Anesth Analg 1987; 47: 48–52.Google Scholar
  8. 8.
    Chernoff DM, Strichartz GR. Kinetics of local anesthetic inhibition of neuronal sodium currents. pH and hydrophobicity dependence. Biophys J 1990; 58: 69–81.PubMedGoogle Scholar
  9. 9.
    Chernoff DM. Kinetic analysis of phasic inhibition of neuronal sodium currents by lidocaine and bupivacaine. Biophys J 1990; 58: 53–68.PubMedGoogle Scholar
  10. 10.
    Rosenberg PH, Heavner JE. Temperature-dependant nerve-blocking action of lidocaine and halothane. Acta Anaesthesiol Scand 1980; 24: 314–20.PubMedGoogle Scholar
  11. 11.
    Bradley DJ, Richards CD. Temperature-dependence of the action of nerve blocking agents and its relationship to membrane-buffer partition coefficients: thermodynamic implications for the site of action of local anaesthetics. Br J Pharmacol 1984; 81: 161–7.PubMedGoogle Scholar
  12. 12.
    Catchlove RFH. The influence of CO2 and pH on local anesthetic action. J Pharmacol Exp Ther 1972; 181: 298–309.PubMedGoogle Scholar
  13. 13.
    Lewis P, Hamilton RC, Loken RG, Maltby JR, Strunin L. Comparison of plain with pH-adjusted bupivacaine with hyaluronidase for peribulbar block. Can J Anaesth 1992; 39: 555–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Compendium of Pharmaceuticals and Specialties, Ottawa: Canadian Pharmaceutical Association, 1990; 1193.Google Scholar
  15. 15.
    Palay DA, Stulting RD. The effect of external ocular compression on intraocular pressure following retrobulbar anesthesia. Ophthalmic Surg 1990; 21: 503–7.PubMedGoogle Scholar
  16. 16.
    Ropo A, Ruusuvaara, Paloheimo M, Mauhuksela E-L, Nikki P. Effect of ocular compression (Autopressor) on intraocular pressure in periocular anaesthesia. Acta Ophthalmolol (Copenh) 1990; 68: 227–9.Google Scholar
  17. 17.
    Jay WM, Carter H, Williams B, Green K. Effect of applying the Honan intraocular pressure reducer before cataract surgery. Am J Ophthalmol 1985; 100: 523–7.PubMedGoogle Scholar
  18. 18.
    Strichartz GR, Sanchez V, Arthur GR, Chafetz R, Martin D. Fundamental properties of local anesthetics. II. Measured octanol:buffer partition coefficients and pKs, values of clinically used drugs. Anesth Analg 1990; 71: 158–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Sanchez V, Sanchez V, Arthur GR, Strichartz GR. Fundamental properties of local anesthetics. I: The dependence of lidocaine’s ionization and octanol:buffer partioning on solvent and temperature. Anesth Analg 1987; 66: 159–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Kamaya H, Hayes JJ Jr, Veda I. Dissociation constants of local anesthetics and their temperature dependence. Anesth Analg 1983; 62: 1025–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Nývlt J, Söhnel O, Matuchová M, Broul M. The effect of admixtures on the rate of crystal growth.In: The Kinetics of Industrial Crystallization, Amsterdam: Elsevier 1985; 189–90.Google Scholar

Copyright information

© Canadian Anesthesiologists 1993

Authors and Affiliations

  • Jeffrey E. Roberts
    • 1
  • Bernard A. MacLeod
    • 2
  • Raymond H. Hollands
    • 3
  1. 1.Department of Pharmacology and TherapeuticsUniversity of British ColumbiaVancouver
  2. 2.Department of AnaesthesiaUniversity of British ColumbiaVancouver
  3. 3.Department of OphthalmologyUniversity of British ColumbiaVancouver

Personalised recommendations