Advertisement

Canadian Journal of Anaesthesia

, Volume 38, Issue 8, pp 989–995 | Cite as

Large tidal volume ventilation improves pulmonary gas exchange during lower abdominal surgery in Trendelenburg’s position

  • W. A. Tweed
  • W. T. Phua
  • K. Y. Chong
  • E. Lim
  • T. L. Lee
Reports on Investigation

Abstract

Impaired pulmonary gas exchange is a common complication of general anaesthesia. Periodic hyperinflation of the lungs and large tidal volume ventilation were the first preventive measures to be widely embraced, but their effectiveness in clinical practice has never been clearly established by controlled clinical studies. To assess their effects in high-risk patients we studied 24 adults having lower abdominal gynaecological surgery in the Trendelenburg (head down) position. Pulmonary oxygen exchange was determined during four steady-states: awake control (AC), after 30 min of conventional tidal volume (CVt, 7.5 ml · kg−1) or high tidal volume (HVt, 12.7 ml · kg−1) ventilation, introduced in random order, and five minutes after manual hyperinflations (HI) of the lungs. The patients’ lungs were ventilated with air/O2 by an Ohmeda volume-controlled ventilator via a circle system. TheFiO2 was controlled at 0.5, andFETCO2 was controlled by adding dead space during HVt. Arterial blood gas analysis was used to calculate the oxygen tension-based indices of gas exchange.

There was significant deterioration of (A-a)DO2 at 30 min in Group A, whose lungs were first ventilated with CVt (81.6 ± 7.2 to 166.8 ± 13.7 mmHg, P < 0.001); but not in Group B, whose lungs were first ventilated with HVt(77.0 ± 9.9 to 104.4 ± 16.8 mmHg). When Group A and B data were pooled there was no difference between randomized CVT and HVt, but improvement occurred after HI. In this model of compromised O2 exchange large inflation volumes (HVt and HI) were of considerable clinical benefit, HVt prevented and HI reversed the gas exchange disorder.

Key words

lung: gas exchange, shunting ventilation: artificial, tidal volume, oxygen tension (gradients), shunting oxygen: blood levels, gradients, tension 

Résumé

L’anesthésie génerale perturbe souvent les échanges gazeux pulmonaires. L’hyperinflation intermittente des poumons et la ventilation pulmonaire à grand volume courant ont très tôt servi à pallier à ce probléme même si leur efficacité n’a jamais été démontrée en clinique. Nous avons mesuré l’impact de ces deux manoeuvres chez 24 patientes en Trendelenburg lors d’interventions chirurgicales abdominales basses (gynécologiques). On mesurait le transfert pulmonaire de l’oxygéne à quatre occasions: avant l’induction de l’anesthésie (EV), après 30 min de ventilation avec volume courant conventionnel (VcC, 7,5 ml · kg− 1)ou avec grand volume courant (VcG, 12,7 ml · kg− 1), l’ordre étant déterminé au hasard, et cinq minutes après hyperinflation pulmonaire (HP). C’est un ventilateur volumé-trique d’Ohmeda branché sur un système anesthésique en cercle qui assurait la ventilation pulmonaire avec un mélange d’air et d’oxyg`ene, uneFiO2 de 0,5 et uneFETCO2 ajustée grâce à l’ajout d’espace mort lors de laVcG. On mesurait les gaz artériels pour calculer le gradient alvéolo-artériel pour l’oxy-gène ((A-a) DO2).

On notait une détérioration significative de ce dernier à 30 min chez le groupe A, ventilation enVcC d’abord (81,6 ± 7,2 à 166,8 ± 13,7 mmHg, P < 0,001) mais non chez le groupe B, ventilation enVcG d’abord (77,0 ± 9,9 à 104,4 ± 16,8 mmHg). Toutefois, une fois regroupées les données des groupes A et B, on n’identifiait pas de différence entre leVcC et leVcG, mais on notait une amélioration après HP. Avec ce modèle clinique où l’oxygénation était compromise, on a démontré que de grandes insufflations pulmonaires (VcG et HP) offraient un avantage considerable; l’usage de grands volumes courants prévenait et l’hyperinflation pulmonaire corrigeait les anomalies des échanges gazeux.

References

  1. 1.
    Nunn JF. Effects of anaesthesia on respiration. Br J Anaesth 1990; 65: 54–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Bergman NA. Distribution of inspired gas during anesthesia and artificial ventilation. J Appl Physiol 1963; 18: 1085–9.PubMedGoogle Scholar
  3. 3.
    Dueck R, Prutow RJ, Davies NJH, Clausen JL, Davidson TM. The lung volume at which shunting occurs with inhalation anaesthesia. Anesthesiology 1988; 69: 854–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Don HF, Wahba WM, Craig DB. Airway closure, gas trapping, and the functional residual capacity during anesthesia. Anesthesiology 1972; 36: 533–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Brisma B, Hedenstierna G, Lundquist H et al. Pulmonary densities during anesthesia with muscular relaxation — a proposal of atelectasis. Anesthesiology 1985; 62: 422–8.Google Scholar
  6. 6.
    Schwieger I, Gamulin Z, Suter PM. Lung function during anaesthesia and respiratory insufficiency in the postoperative period: physiological and clinical implications. Acta Anaesthesiol Scand 1989; 33: 527–34.PubMedGoogle Scholar
  7. 7.
    Egbert LD, Laver MB, Bendixen HH. Intermittent deep breaths and compliance during anesthesia in man. Anesthesiology 1963; 24: 57–60.CrossRefGoogle Scholar
  8. 8.
    Sykes MK, Young WE, Robinson BE. Oxygenation during anaesthesia with controlled ventilation. Br J Anaesth 1965; 37: 314–25.PubMedGoogle Scholar
  9. 9.
    Bendixen HH, Hedley-Whyte MB, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med 1963; 269: 991–6.PubMedGoogle Scholar
  10. 10.
    Visick WD, Fairley HB, Hickey RF. The effects of tidal volume and end-expiratory pressure on pulmonary gas exchange during anesthesia. Anesthesiology 1973; 39: 285–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Marshall BE, Grange RA. Changes in respiratory physiology during ether/air anaesthesia. Br J Anaesth 1966; 38: 329–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Pappenheimer JR, Comroe JH, Cournand A et al. Standardization of definitions and symbols in respiratory physiology. Fed Proc 1950; 9: 602–5.Google Scholar
  13. 13.
    Herrick IA, Champion LK, Froese AB. A clinical comparison of indices of pulmonary gas exchange with changes in the inspired oxygen concentration. Can J Anaesth 1990; 37: 69–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Doyle JD. Arterial/alveolar oxygen tension ratio: a critical appraisal. Can Anaesth Soc J 1986: 33: 471–4.PubMedGoogle Scholar
  15. 15.
    Rasanen J, Downs JB, Malec DJ, Oates K. Oxygen tensions and oxyhemoglobin saturations in the assessment of pulmonary gas exchange. Crit Care Med 1987: 15: 1058–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Zetterstrom H. Assessment of the efficiency of pulmonary oxygenation. The choice of oxygenation index. Acta Anaesthesiol Scand 1988: 32: 579–84.PubMedGoogle Scholar
  17. 17.
    Wyche MQ, Teichner RL, Kallos T, Marshall BE, Smith TC. Effects of continuous positive pressure breathing on functional residual capacity and arterial oxygenation during intra-abdominal operations. Anesthesiology 1973: 38: 68–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Cane DR, Shapiro BA, Templin R, Walther K. Unreliability of oxygen tension-based indices in reflecting intrapulmonary shunting in critically ill patients. Crit Care Med 1988: 16: 1243–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Rehder K, Knopp TJ, Sessler AD, Didier EP. Ventilationperfusion relationships in young healthy awake and anesthetized-paralyzed man. J Appl Physiol 1979; 47: 745–53.PubMedGoogle Scholar
  20. 20.
    Rehder K. Anesthesia and the mechanics of respiration.In: Covino BGet al. (Eds.). Effects of Anesthesia. Bethesda, Maryland: American Physiological Society, 1985: 91–106. 995Google Scholar
  21. 21.
    Froese AB. Effects of anesthesia and paralysis on the chest wall.In: Covino BGet al. (Ed.). Effects of Anesthesia, Bethesda, Maryland: American Physiological Society, 1985; 107–120.Google Scholar
  22. 22.
    Gunnarsson L, Strandberg A, Brismar B et al. Atelectasis and gas exchange impairment during enflurane/nitrous oxide anaesthesia. Acta Anaesthesiol Scand 1989; 33: 629–37.PubMedGoogle Scholar
  23. 23.
    Klingstedt C, Hedenstierna G, Lundquist H et al. The influence of body position and differential ventilation on lung dimensions and atelectasis formation in anaesthetized man. Acta Anaesthesiol Scand 1990; 34: 315–22.PubMedGoogle Scholar
  24. 24.
    Klingstedt C, Hedenstierna G, Baehrendtz S et al. Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional ventilation and differential ventilation. Acta Anaesthesiol Scand 1990; 34: 421–9.PubMedGoogle Scholar
  25. 25.
    Hedley-Whyte J, Laver MB, Bendixen HH. Effects of changes in tidal ventilation on physiologic shunting. Am J Physiol 1964; 206: 891–7.PubMedGoogle Scholar
  26. 26.
    Weenig CS, Pietak S, Hickey RF, Fairley HB. Relationship of preoperative closing volume to functional residual capacity and alveolar-arterial oxygen difference during anesthesia with controlled ventilation. Anesthesiology 1974: 41: 3–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Craig DB, Wahba WM, Don H. Airway closure and lung volumes in surgical patients. Can Anaesth Soc J 1971; 18: 92–9.PubMedGoogle Scholar
  28. 28.
    Don HF, Wahba WM, Craig DB. Airway closure, gas trapping, and the functional residual capacity during anesthesia. Anesthesiology 1972; 36: 533–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Gilmour I, Burnham M, Craig DB. Closing capacity measurement during general anaesthesia. Anesthesiology 1976; 45: 477–82.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1991

Authors and Affiliations

  • W. A. Tweed
    • 1
  • W. T. Phua
    • 1
  • K. Y. Chong
    • 1
  • E. Lim
    • 1
  • T. L. Lee
    • 1
  1. 1.Department of Anaesthesia, National University HospitalNational University of SingaporeSingapore

Personalised recommendations