Advertisement

Journal d’Analyse Mathématique

, Volume 63, Issue 1, pp 175–219 | Cite as

Commutators, collars and the geometry of Möbius groups

  • F. W. Gehring
  • G. J. Martin
Article

Keywords

Discrete Group Common Fixed Point Discrete Subgroup Elliptic Generator Kleinian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ah]
    L. V. Ahlfors,Complex Analysis, 3rd edition, McGraw-Hill, New York, 1979.zbMATHGoogle Scholar
  2. [An]
    E. M. Andreev,On convex polyhedra in Lobacevskil spaces, Math. USSR Sbornik10 (1970), 413–440.zbMATHCrossRefGoogle Scholar
  3. [B1]
    A. F. Beardon,The Geometry of Discrete Groups, Springer-Verlag, Berlin, 1983.zbMATHGoogle Scholar
  4. [B2]
    A. F. Beardon,Iteration of Rational Functions, Springer-Verlag, Berlin, 1991.zbMATHGoogle Scholar
  5. [BM]
    R. Brooks and J. P. Matelski,Collars in Kleinian groups, Duke Math. J.49 (1982), 163–182.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [CS]
    J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, Springer-Verlag, Berlin, 1988.zbMATHGoogle Scholar
  7. [Ga]
    D. Gallo,A 3-dimensional hyperbolic collar lemma, Lecture Notes in Math.971 (1983), 31–35.CrossRefMathSciNetGoogle Scholar
  8. [GM1]
    F. W. Gehring and G. J. Martin,Stability and extremality in Jørgensen’s inequality, Complex Variables12 (1989), 277–282.zbMATHMathSciNetGoogle Scholar
  9. [GM2]
    F. W. Gehring and G. J. Martin,Iteration theory and inequalities for Kleinian groups, Bull. Amer. Math. Soc.21 (1989), 57–63.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [GM3]
    F. W. Gehring and G. J. Martin,Inequalities for Möbius transformations and discrete groups, J. Reine Angew. Math.418 (1991), 31–76.zbMATHMathSciNetGoogle Scholar
  11. [GM4]
    F. W. Gehring and G. J. Martin,Axial distances in discrete Möbius groups, Proc. Natl. Acad. Sci. USA89 (1992), 1999–2001.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [GM5]
    F. W. Gehring and G. J Martin,6-torsion and hyperbolic volume, Proc. Amer. Math. Soc.117 (1993), 727–735.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [GM6]
    F. W. Gehring and G. J. Martin,Torsion and volume in hyperbolic 3-folds (to appear).Google Scholar
  14. [GM7]
    F. W. Gehring and G. J. Martin,On the minimal volume hyperbolic 3-orbifold, Bull. Amer. Math. Soc. (to appear).Google Scholar
  15. [GM8]
    F. W. Gehring and G. J. Martin,Elliptic axes in discrete groups (to appear).Google Scholar
  16. [GM9]
    F. W. Gehring and G. J. Martin,Discreteness in Kleinian groups and iteration theory (to appear).Google Scholar
  17. [Gi]
    J. Gilman,A geometric approach to Jørgensen’s inequality, Adv. in Math.85 (1991), 193–197.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [Ha]
    N. Halpern,A proof of the collar lemma, Bull. London Math. Soc.13 (1981), 141–144.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Ho]
    R. D. Horowitz,Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math.25 (1972), 635–649.CrossRefMathSciNetGoogle Scholar
  20. [Jl]
    T. Jørgensen,On discrete groups of Möbius transformations, Amer. J. Math.98 (1976), 739–749.CrossRefMathSciNetGoogle Scholar
  21. [J2]
    T. Jørgensen,Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. Math.106 (1977), 61–72.CrossRefMathSciNetGoogle Scholar
  22. [J3]
    T. Jørgensen,Comments on a discreteness condition for subgroups of SL(2, ℂ), Can. J. Math.31 (1979), 87–92.Google Scholar
  23. [J4]
    T. Jørgensen,Traces in 2-generator subgroups of SL(2, ℂ), Proc. Amer. Math. Soc.84 (1982), 339–343.CrossRefMathSciNetGoogle Scholar
  24. [K]
    L. Keen,Collars on Riemann surfaces, inDiscontinuous Groups and Riemann Surfaces, Annals of Math. Studies79 (1974), 263–268.MathSciNetGoogle Scholar
  25. [La]
    F. Lanner,On complexes with transitive groups of automorphisms, Medd. Lunds Univ. Math. Sem.11 (1950).Google Scholar
  26. [Le]
    A. Leutbecher,Über Spitzen diskontinuierlicher Gruppen von lineargebrochenen Transformationen, Math. Zeit.100 (1967), 183–200.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [Mal]
    B. Maskit,Kleinian Groups, Springer-Verlag, Berlin, 1987.Google Scholar
  28. [Ma2]
    B. Maskit,Some special 2-generator Kleinian groups, Proc. Amer. Math. Soc.106 (1989), 175–186.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [Me]
    R. Meyerhoff,A lower bound for the volume of hyperbolic 3-orbifolds, Duke Math. J.57 (1988), 185–203.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Ra]
    B. Randol,Cylinders in Riemann surfaces, Comment. Math. Helv.54 (1979), 1–5.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [Ro]
    G. Rosenberger,All generating pairs of all two-generator Fuchsian groups, Arch. Math.46 (1986), 198–204.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [S]
    H. Shimizu,On discontinuous groups operating on the product of the upper half planes, Ann. Math.77 (1963), 33–71.CrossRefMathSciNetGoogle Scholar
  33. [Tal]
    D. Tan,On two-generator discrete groups of Möbius transformations, Proc. Amer. Math. Soc.106 (1989), 763–770.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [Ta2]
    D. Tan,On inequalities for discrete groups of Möbius transformations (to appear).Google Scholar
  35. [Th]
    W. P. Thurston,The geometry and topology of three-manifolds, Princeton Univ. notes.Google Scholar
  36. [Tr]
    C. R. Traina,Trace polynomial for two generator subgroups of SL(2, ℂ), Proc. Amer. Math. Soc.79 (1980), 369–372.CrossRefMathSciNetGoogle Scholar
  37. [V1]
    E. B. Vinberg,Discrete groups generated by reflections in Lobačevskii spaces, Math. USSR Sbornik1 (1967), 429–444.CrossRefGoogle Scholar
  38. [V2]
    E. B. Vinberg,Some arithmetical discrete groups in Lobačevskii spaces, inDiscrete Subgroups of Lie Groups and Applications to Moduli, Oxford Univ. Press, 1975, pp.323–348.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1994

Authors and Affiliations

  • F. W. Gehring
    • 1
  • G. J. Martin
    • 2
  1. 1.Mathematics DepartmentUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations