Journal d’Analyse Mathématique

, Volume 63, Issue 1, pp 175–219 | Cite as

Commutators, collars and the geometry of Möbius groups

  • F. W. Gehring
  • G. J. Martin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ah]
    L. V. Ahlfors,Complex Analysis, 3rd edition, McGraw-Hill, New York, 1979.MATHGoogle Scholar
  2. [An]
    E. M. Andreev,On convex polyhedra in Lobacevskil spaces, Math. USSR Sbornik10 (1970), 413–440.MATHCrossRefGoogle Scholar
  3. [B1]
    A. F. Beardon,The Geometry of Discrete Groups, Springer-Verlag, Berlin, 1983.MATHGoogle Scholar
  4. [B2]
    A. F. Beardon,Iteration of Rational Functions, Springer-Verlag, Berlin, 1991.MATHGoogle Scholar
  5. [BM]
    R. Brooks and J. P. Matelski,Collars in Kleinian groups, Duke Math. J.49 (1982), 163–182.MATHCrossRefMathSciNetGoogle Scholar
  6. [CS]
    J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, Springer-Verlag, Berlin, 1988.MATHGoogle Scholar
  7. [Ga]
    D. Gallo,A 3-dimensional hyperbolic collar lemma, Lecture Notes in Math.971 (1983), 31–35.CrossRefMathSciNetGoogle Scholar
  8. [GM1]
    F. W. Gehring and G. J. Martin,Stability and extremality in Jørgensen’s inequality, Complex Variables12 (1989), 277–282.MATHMathSciNetGoogle Scholar
  9. [GM2]
    F. W. Gehring and G. J. Martin,Iteration theory and inequalities for Kleinian groups, Bull. Amer. Math. Soc.21 (1989), 57–63.MATHCrossRefMathSciNetGoogle Scholar
  10. [GM3]
    F. W. Gehring and G. J. Martin,Inequalities for Möbius transformations and discrete groups, J. Reine Angew. Math.418 (1991), 31–76.MATHMathSciNetGoogle Scholar
  11. [GM4]
    F. W. Gehring and G. J. Martin,Axial distances in discrete Möbius groups, Proc. Natl. Acad. Sci. USA89 (1992), 1999–2001.MATHCrossRefMathSciNetGoogle Scholar
  12. [GM5]
    F. W. Gehring and G. J Martin,6-torsion and hyperbolic volume, Proc. Amer. Math. Soc.117 (1993), 727–735.MATHCrossRefMathSciNetGoogle Scholar
  13. [GM6]
    F. W. Gehring and G. J. Martin,Torsion and volume in hyperbolic 3-folds (to appear).Google Scholar
  14. [GM7]
    F. W. Gehring and G. J. Martin,On the minimal volume hyperbolic 3-orbifold, Bull. Amer. Math. Soc. (to appear).Google Scholar
  15. [GM8]
    F. W. Gehring and G. J. Martin,Elliptic axes in discrete groups (to appear).Google Scholar
  16. [GM9]
    F. W. Gehring and G. J. Martin,Discreteness in Kleinian groups and iteration theory (to appear).Google Scholar
  17. [Gi]
    J. Gilman,A geometric approach to Jørgensen’s inequality, Adv. in Math.85 (1991), 193–197.MATHCrossRefMathSciNetGoogle Scholar
  18. [Ha]
    N. Halpern,A proof of the collar lemma, Bull. London Math. Soc.13 (1981), 141–144.MATHCrossRefMathSciNetGoogle Scholar
  19. [Ho]
    R. D. Horowitz,Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math.25 (1972), 635–649.CrossRefMathSciNetGoogle Scholar
  20. [Jl]
    T. Jørgensen,On discrete groups of Möbius transformations, Amer. J. Math.98 (1976), 739–749.CrossRefMathSciNetGoogle Scholar
  21. [J2]
    T. Jørgensen,Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. Math.106 (1977), 61–72.CrossRefMathSciNetGoogle Scholar
  22. [J3]
    T. Jørgensen,Comments on a discreteness condition for subgroups of SL(2, ℂ), Can. J. Math.31 (1979), 87–92.Google Scholar
  23. [J4]
    T. Jørgensen,Traces in 2-generator subgroups of SL(2, ℂ), Proc. Amer. Math. Soc.84 (1982), 339–343.CrossRefMathSciNetGoogle Scholar
  24. [K]
    L. Keen,Collars on Riemann surfaces, inDiscontinuous Groups and Riemann Surfaces, Annals of Math. Studies79 (1974), 263–268.MathSciNetGoogle Scholar
  25. [La]
    F. Lanner,On complexes with transitive groups of automorphisms, Medd. Lunds Univ. Math. Sem.11 (1950).Google Scholar
  26. [Le]
    A. Leutbecher,Über Spitzen diskontinuierlicher Gruppen von lineargebrochenen Transformationen, Math. Zeit.100 (1967), 183–200.MATHCrossRefMathSciNetGoogle Scholar
  27. [Mal]
    B. Maskit,Kleinian Groups, Springer-Verlag, Berlin, 1987.Google Scholar
  28. [Ma2]
    B. Maskit,Some special 2-generator Kleinian groups, Proc. Amer. Math. Soc.106 (1989), 175–186.MATHCrossRefMathSciNetGoogle Scholar
  29. [Me]
    R. Meyerhoff,A lower bound for the volume of hyperbolic 3-orbifolds, Duke Math. J.57 (1988), 185–203.MATHCrossRefMathSciNetGoogle Scholar
  30. [Ra]
    B. Randol,Cylinders in Riemann surfaces, Comment. Math. Helv.54 (1979), 1–5.MATHCrossRefMathSciNetGoogle Scholar
  31. [Ro]
    G. Rosenberger,All generating pairs of all two-generator Fuchsian groups, Arch. Math.46 (1986), 198–204.MATHCrossRefMathSciNetGoogle Scholar
  32. [S]
    H. Shimizu,On discontinuous groups operating on the product of the upper half planes, Ann. Math.77 (1963), 33–71.CrossRefMathSciNetGoogle Scholar
  33. [Tal]
    D. Tan,On two-generator discrete groups of Möbius transformations, Proc. Amer. Math. Soc.106 (1989), 763–770.MATHCrossRefMathSciNetGoogle Scholar
  34. [Ta2]
    D. Tan,On inequalities for discrete groups of Möbius transformations (to appear).Google Scholar
  35. [Th]
    W. P. Thurston,The geometry and topology of three-manifolds, Princeton Univ. notes.Google Scholar
  36. [Tr]
    C. R. Traina,Trace polynomial for two generator subgroups of SL(2, ℂ), Proc. Amer. Math. Soc.79 (1980), 369–372.CrossRefMathSciNetGoogle Scholar
  37. [V1]
    E. B. Vinberg,Discrete groups generated by reflections in Lobačevskii spaces, Math. USSR Sbornik1 (1967), 429–444.CrossRefGoogle Scholar
  38. [V2]
    E. B. Vinberg,Some arithmetical discrete groups in Lobačevskii spaces, inDiscrete Subgroups of Lie Groups and Applications to Moduli, Oxford Univ. Press, 1975, pp.323–348.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1994

Authors and Affiliations

  • F. W. Gehring
    • 1
  • G. J. Martin
    • 2
  1. 1.Mathematics DepartmentUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations