Canadian Journal of Anaesthesia

, Volume 39, Issue 9, pp 932–937 | Cite as

Treatment of intraoperative hypertension with enflurane, nicardipine, or human atrial natriuretic peptide: haemodynamic and renal effects

  • Fumio Goto
  • Seiji Kato
  • Itaru Sudo
Reports of Investigation

Abstract

The purpose of this study was to assess the effects of the calcium entry blocker nicardipine and alpha human atrial natriuretic peptide (hANP) on antihypertensive and diuretic activity in hypertensive surgical patients. The site of the diuretic actions of these drugs along the nephron were also investigated by measuring the excretion rate of inorganic phosphate (PO4). Hypertension during gastrectomy was treated by increasing the concentration of enflurane, by nicardipine infusion (0.5-2.0 μg · kg−1 · min−1), or by hANP infusion (0.05–0.2 μg · kg−1 · min−1) under general anaesthesia. Enflurane, nicardipine and hANP all decreased arterial pressure to the same extent. Urine flow, Na and PO4 excretion increased following the administration of nicardipine or hANP. Fractional distal reabsorption of sodium was suppressed from 89.7 ± 2.8% to 82.1 ± 5.0% by the hANP, but not by the nicardipine infusion. Creatinine clearance was increased by hANP infusion, but did not change in the nicardipine group. It is concluded that nicardipine and hANP can be used safely for the treatment of hypertension during surgery. Both drugs induced phosphaturic diuresis, but the site of action of the two drugs on the nephron may be different. Phosphate reabsorption is considered to occur largely in the renal proximal tubule, so that its appearance in the urine in increased quantities without the change of renal circulation in the nicardipine group suggests a proximal tubular action of this drug. However, the site of action of hANP in the kidney was not determined because GFR increased and distal sodium reabsorption was suppressed due to the drug infusion.

Key words

anaesthetics, volatile: enflurane blood pressure: hypertension hormones: atrial natriuretic peptide kidney: function pharmacology: nicardipine 

Résumé

Cette étude évalue les effets de l’inhibiteur calcique nicardipine et du peptide atrial alpha natriurique humain (hANP) sur l’activité antihypertensive et diurétique chez le patient hypertendu. Sur le néphron, on a aussi recherché le site de l’activité diurétique de ces produits par la mesure de la vitesse d’excrétion du phosphate inorganique (PO4). L’hypertension survenant pendant la gastrectomie a été traitée par l’augmentation de la concentration d’enflurane, par une perfusion de nicardipine, (0,5–0,2 (μg · kg−1) ou par une perfusion de hANP sous anesthésie générate. L’enflurane, la nicardipine et l’hANP ont tous abaissé au même degré la pression artérielle. Le débit urinaire, le sodium et l’excrétion de PO4 ont augmenté à la suite de l’administration de nicardipine ou de hANP. La réabsorption fractionnée distale du sodium est diminuée de 89,7 ± 2,8% à 82,1 ± 5,0% par l’hANP contrairement à la perfusion de nicardipine. La clearance de la créatinine est augmentée par la perfusion d’hANP, mais ne change pas pour le groupe nicardipine. On conclut que l’hANP et la nicardipine peuvent être utilisés en toute sécurité pour le traitement de l’hypertension pendant la chirurgie. Les deux médicaments provoquent une diurése phosphaturique, mais le site d’action des deux médicaments pourrait être différent. On croit que la réabsorption du phosphate survient principalement au niveau du tube proximal, alors que son apparition dans l’urine en plus grande quantité sans changement de circulation rénale, dans le groupe nicardipine, suggère une action tubulaire proximale. Cependant, le site rénal de l’action de l’hANP n’a pu être déterminé parce que la filtration glomérulaire augmente et la réabsorption distale du sodium ést supprimée par sa perfusion.

References

  1. 1.
    Van Schaik BAM, Van Nistelrooy AEJ, Geyskes GG. Antihypertensive and renal effects of nicardipine. Br J Clin Pharmacol 1984; 18: 57–63.PubMedGoogle Scholar
  2. 2.
    Bauer JH, Reams G. Shortand long-term effects of calcium entry blockers on the kidney. Am J Cardiol 1987; 59: 66A-71A.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith SA, Rafiqi EI, Gardener EG, Young MA, Littler WA. Renal effects of nicardipine in essential hypertension: differences between acute and chronic therapy. J Hypertens 1987; 5: 693–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Leonetti G, Cuspidi C, Sampieri L, Terzoli L, Zanchetti A. Comparison of cardiovascular, renal and humoral effects of acute administration of two calcium channel blockers in normotensive and hypertensive subjects. J Cardiovasc Pharmacol 1982; 4: 319–24.CrossRefGoogle Scholar
  5. 5.
    Dietz JR, Davis JO, Freeman RH, Villarreal D, Echtenkamp SF. Effects of intrarenal infusion of calcium entry blockers in anesthetized dogs. Hypertension 1983; 5: 482–8.PubMedGoogle Scholar
  6. 6.
    DiBona GF, Sawin LL. Renal tubular site of action of felopidine. J Pharmacol Exp Ther 1984; 228: 420–4.PubMedGoogle Scholar
  7. 7.
    Beasley D, Malvin RL. Atrial extracts increase glomerular filtration rate in vivo. Am J Physiol 1984; 248: F24-F30.Google Scholar
  8. 8.
    Dunn BR, Ichikawa I, Pfeffer JM, Troy JL, Brenner BM. Renal and systemic hemodynamic effects of synthetic atrial natriuretic peptide in the anesthetized rat. Circ Res 1986; 59: 237–46.PubMedGoogle Scholar
  9. 9.
    Richards AM, Nicholls MG, Espiner EA, et al. Effects of alpha-human atrial naturiuretic peptide in essential hypertension. Hypertension 1985; 7: 812–7.PubMedGoogle Scholar
  10. 10.
    Bolli P, Mueller FB, Under L, et al. The vasodilator potency of atrial natriuretic peptide in man. Circulation 1987; 75: 221–8.PubMedGoogle Scholar
  11. 11.
    Strickler JC, Thompson DD, Klose RM, Giebisch G. Micropuncture study of inorganic phosphate excretion in the rat. J Clin Invest 1964; 43: 1596–607.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomsen K. Lithium clearance: a new method for determining proximal and distal reabsorption of sodium and water. Nephron 1984; 37: 217–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Dennis VW, Brazy PC. Sedium, phosphate, glucose, bicarbonate and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney. J Clin Invest 1978; 62: 387–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Dennis VW, Stead WW, Myers JL. Renal handling of phosphate and calcium. Ann Rev Physiol 1979; 41: 257–71.CrossRefGoogle Scholar
  15. 15.
    Abe Y, Okahara T, Yamamoto K. Effect of D-3-acetoxy-2, 3-dihydro-5-2-(dimethylamino) ethyl-2-(Pmethoxypheny l)-1,5-benzothiazepin-4(5H)-one-hydrochloride (CRD) on renal function in the dog. Jpn Circ J 1972; 36: 1002–3.Google Scholar
  16. 16.
    Abe Y, Komori T, Miura K, et al. Effects of the calcium antagonist nicardipine on renal function and renin release in dogs. J Cardiovasc Pharmacol 1983; 5: 254–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Goto F, Watanabe I. Calcium entry blocker nicardipine inhibits sodium and inorganic phosphate reabsorption independent of renal circulation in dogs. Journal of Anesthesia 1992; 6: 153–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Mudge GH, Berndt WO, Valtin H. Tubular transport of urea, glucose, phosphate, uric acid, sulphate, and thiosulphate.In: Orloff J, Berliner RW (Eds.). Handbook of Physiology. Section 8: Renal Physiology. Washington DC: American Physiological Society 1973; 587–652.Google Scholar
  19. 19.
    Baumann K, de Rouffignac C, Roinel N, Rumrich G, Ullrich KJ. Renal phosphate transport: inhomogeneity of local proximal transport rates and sodium dependence. Pflugers Arch 1975; 356: 287–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Dennis VW, Brazy PC. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney. J Clin Invest 1978; 62: 387–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Brazy PC, Dennis VW. Characteristics of glucosephlorizin interactions in isolated proximal tubules. Am J Physiol 1978; 234: F279-F286.PubMedGoogle Scholar
  22. 22.
    Huang CL, Lewicki J, Johnson LK, Cogan MG. Renal mechanism of action of rat atrial natriuretic factor. J Clin Invest 1985; 75: 769–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Briggs JP, Steipe B, Schubert G, Schnermann J. Micropuncture studies of the renal effects of atrial natriuretic substance. Pflugers Arch 1982; 395: 271–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Hammond TG, Haramati A, Knox FG. Synthetic atrial natriuretic factor decreases renal tubular phosphate reabsorption in rats. Am J Physiol 1985; 249: F315-F318.PubMedGoogle Scholar
  25. 25.
    Sonnenberg H, Cupples WA, DeBold AJ, Veress AT. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can J Physiol Pharmacol 1982; 60: 1149–52.PubMedGoogle Scholar
  26. 26.
    Ballermann BJ, Brenner BM. Role of atrial peptides in body fluid homeostasis. Circ Res 1986; 58: 619–30.PubMedGoogle Scholar
  27. 27.
    Palluk R, Gaida W, Hoefke W. Minireview: atrial natriuretic factor. Life Sciences 1985; 36: 1415–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Zimmerman RS, Schirger JA, Edwards BS, Schwab TR, Heublein DM, Burnett JC Jr. Cardio-renal-endocrine dynamics during stepwise infusion of physiologic and pharmacologic concentrations of atrial natriuretic factor in the dog. Circ Res 1987; 61: 63–9.PubMedGoogle Scholar
  29. 29.
    Shen YT, Young MA, Ohanian J, Graham RM, Vatner SF. Atrial natriuretic factor-induced systemic vasoconstriction in conscious dogs, rats, and monkeys. Circ Res 1990; 66: 647–61.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1992

Authors and Affiliations

  • Fumio Goto
    • 1
  • Seiji Kato
    • 1
  • Itaru Sudo
    • 2
  1. 1.Department of AnesthesiologyKitasato University School of MedicineKanagawaJapan
  2. 2.Saiseikai Utsunomiya HospitalUtsunomiyaJapan

Personalised recommendations