Canadian Anaesthetists’ Society Journal

, Volume 29, Issue 6, pp 617–621 | Cite as

The effect of metocurine and metocurine-pancuronium combination on intraocular pressure

  • Anthony J. Cunningham
  • Patrick Kelly
  • James Farmer
  • A. Garner Watson
Article

Abstract

Maintenance of a normal to low intraocular pressure during ocular surgery is of critical importance. The prime considerations for anaesthetic management include adequate depth of anaesthesia, normal carbon dioxide and arterial oxygen tensions, stable cardiovascular status and avoidance of stimuli likely to raise central venous pressure. Non-depolarizing muscle relaxants are associated with a reduction in intraocular pressure. Metocurine, a non-depolarizing relaxant, formerly known as dimethyltubocurarine, has been recently reintroduced into clinical practice. Metocurine has been reported to be 1.8 times more potent than d-tubocurarine and has the clinically advantageous cardiovascular effects of stable heart rate and mean blood pressure with minimal associated histamine release. When combined with pancuronium, metocurine potentiates the neuromuscular blocking properties, so that small doses of both drugs in combination produce effective neuromuscular block. This study was designed to assess the suitability of metocurine 0.3 mg-kg~-1 and metocurine 0.08 mg-kg-1 plus pancuronium 0.02 mg-kg-1 as muscle relaxants for ocular surgery. The results demonstrated that metocurine and metocurine-pancuronium combination in the above doses combined with sodium thiopentone 5 mg-kg-1 produced ideal conditions for intubation of the trachea in 4.45 (±0.19 SE) minutes and 4.35 (±0.16 SE) minutes respectively. In both treatment groups intraocular pressure was reduced below control values and a pattern of intraocular pressure stability ideal for ocular surgery was obtained during the 10 minutes observation period. The delayed onset of sufficient paralysis for tracheal intubation - 4.45 (±0.19SE) minutes for metocurine and 4.35 (±0.16SE) minutes for the combination - makes these techniques unsuitable for emergency ocular surgery because of the long interval when the airway is unprotected.

Key Words

Eye intraocular pressure Neuromuscular Relaxants metocurine pancuronium 

Résumé

La chirurgie oculaire nécessite le maintien de pressions intraoculaires basses ou normales. Une bonne conduite anesthésique inclut une profondeur suffisante, une normocarbie et une oxygénation adéquate, un état cardiovas-culaire stable et la prévention de tout stimulus susceptible d’augmenter la pression veineuse centrale. Les antide“polarisants ont l’avantage de produire une baisse de la pression intraoculaire. La métocurine, agent antidépolarisant connu aussi sous le nom de diméthyltubocurarine a récemment élé réintroduite en anesthétic. La métocurine est 1.8 fois plus puissante que la d-tubocurarine tout en procurant des bénéfices cardiovasculaires certains: stabilité de la fréquence cardiaque et de la pression artérielle moyenne avec décharge minime d’histamine. Lorsqu’on l’associe au pancuronium, la métocurine potentialise le bloquage musculaire de sorte que de petites doses des deux produits peuvent produire une myorésolution efficace. Cette étude a ét6 conçue pour évaluer l’efficacité de doses de métocurine 0.3mg-kg-1 et 0.08 mgkg-1 assoicées au pancuronium 0.02 mg-kg-1 comme myorelaxants pendant la chirurgie oculaire. Les résultats ont démontré que la métocurine et l’association métocurine-pancuronium aux doses déjà mentionnSes avec thiopentone 5 mg-kg-1 produisent des conditions idéales pour l’intubation en 4.45 (± 19 SE) minutes et 4.53 (±16 SE) minutes respectivement. Dans les deux groupes, la tension intra-oculaire a été réquire sous le niveau des valeurs de contrôle et un état de stabilité tensionnelle intraoculaire idéale pour la chirurgie oculaire a été obtenue pendant la période d’observation de 10 minutes. Le dé1ai nécessaire a l’obtention d’une paralysie suffisante pour l’intubation trachéale, 4.45 (±0.19 SE) minutes pour le métocurine et 4.35 (±9.16 SE) minutes pour l’association des deux antidépolarisants, rend ces techniques inad6quates pour la chirurgie oculaire d’urgence à cause de la longueur de l’intervalle au cours duquel les voies respiratoires restent sans protection.

References

  1. 1.
    Stoelting, V.K. Graf, J.P. &Vieira, Z. Dimethyl ether of d-tubocurarine iodine as an adjunct to anaesthesia. Proc. Soc. Exp. Biol. Med.69: 565–566 (1948).PubMedGoogle Scholar
  2. 2.
    Savarese, J.J., Ali, H.H. &Antonio, R.P. The clinical pharmacology of metocurine. Anesthesiology47: 277–284 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    Hughes, R., Ingram, G.S. &Payne, J.P. Studies of dimethyl tubocurarine in anaesthetized man. Br. J. Anaesth.48: 969–973 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    Hughes, R. &Chapple, D.J. Effects of non-depolarizing neuromuscular blocking agents on peripheral autonomic mechanisms in cat. Br. J. Anaesth.48: 59–67 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    Hughes, R. &Chapple, D.J. Cardiovascular and neuromuscular effects of dimethyl tubocurarine in anaesthetized cats and rhesus monkeys. Br. J. Anaesth.48: 847–851 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    McCullouGh, L.S., Stone, W.A. &Delaunois, A.L. The effect of dimethyl tubocurarine iodine on cardiovascular parameters, post ganglionic sympathetic activity and histamine release. Anesth. Analg. (Cleve).57: 554–559 (1972).Google Scholar
  7. 7.
    Lebowitz, P.W., Ramsey, F.M., Savarese, J.J. &Ali, H.H. Potentiation of neuromuscular blockade in man produced by combinations of pancuronium and metocurine or pancuronium and d-tubocurarine. Anesth. Analg.59: 604–609 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    Lebowitz, P.W., Ramsey, F.M., Savarese, J.J., ALI, H.H. &de Bros, F.M. Combination of pancuronium and metocurine: Neuromuscular and hemodynamic advantages over pancuronium alone. Anesth. Analg.60: 12–17 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    Lund, I. &Stovner, J. Dose response curves for tubocurarine, alcuronium and pancuronium. Acta Anaesthesiol. Scand. Suppl.37: 238 (1970).Google Scholar
  10. 10.
    Morrison, D.F. Multivariate Statistical Methods. 1st ed., Toronto, McGraw Hill Book Company (1967).Google Scholar
  11. 11.
    Galindo, A. The role of pre-junctional effects in myoneural transmission. Anesthesiology36: 598–608 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    Su, P.C., Wen-Huey, L.S. &Rosen, A.D. Pre and postsynaptic effects of pancuronium at the neuromuscular junction of the mouse. Anesthesiology50: 199–204 (1974).Google Scholar
  13. 13.
    Stovner, J., Theodorsen, L. &Bjelke, E. Sensitivity dimethyltubocurarine and toxiferene with special reference to serum proteins. Bri. J. Anaesth.44: 374–380 (1972).CrossRefGoogle Scholar
  14. 14.
    Duncalf, D. Anaesthesia and intraocular pressure. Bull. N. Y. Acad. Med.57: 374–379 (1975).Google Scholar
  15. 15.
    Lincoff, H.A., Ellis, C.H. &De Voe, A.G. The effect of succinylcholine on intraocular pressure. Am. J. Ophthalmol.40: 501–510 (1955).PubMedGoogle Scholar
  16. 16.
    Anaesthesia in Ophthalmology: International Ophthalmology Clinics.R.B. Smith, (Ed.) Boston, Little, Brown, Aboul-Eish, E.: Physiology of the eye pertinent to anaesthesia, vol13: 1–18 (1973).Google Scholar
  17. 17.
    Duncalf, D. &Weitzner, S.W. The influence of ventilation and hypercapnia on intraocular pressure during anaesthesia. Anesth. Analg. (Cleve).42: 232–237 (1963).Google Scholar
  18. 18.
    Dietert, S.E. The demonstration of different types of muscle fibres in human extraocular muscle by electron microscopy and cholinesterase staining. Invest. Ophthalmol.4: 51–63 (1965).PubMedGoogle Scholar
  19. 19.
    Hoffman, H. &HOlzer, H. Die Wirkung von Mus- kelrelaxantien auf den intraokularen Druck. Klin. Monatsbl. Augenheilk.123: 1–16 (1953).Google Scholar
  20. 20.
    Katz, R.L. &EakinGs, K.E. A comparison of the effects of neuromuscular blocking agents and cholinesterase inhibitors on the tibialis anterior and superior rectus muscle of the cat. J. Pharmacol. Exp. Ther.752: 304–312 (1966).Google Scholar
  21. 21.
    LITWILLER, R.W., DIFAZIO, C.A. &RUSHIA, E.L. Pancuronium and intraocular pressure. Anesthesiology42: 750–752 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    Cullen, D.J. The effect of pretreatment with non-depolarizing muscle relaxants on the neuromuscular blocking action of succinylcholine. Anesthesiology35: 572–578 (1971).PubMedCrossRefGoogle Scholar
  23. 23.
    Cunningham, A.J., Albert, O., Cameron, J. &Watson, A.G. The effect of intravenous diazeparn on rise of intraocular pressure following succinylcholine. Can. Anaesth. Soc. J.28: 591–596 (1981).PubMedGoogle Scholar
  24. 24.
    Carballo, A.S. Succinylcholine and acetazolamide (Diamox) in anaesthesia for ocular surgery. Can. Anaesth. Soc. J.12: 486–498 (1965).PubMedCrossRefGoogle Scholar
  25. 25.
    Katz, R.L.,Eakins, K.E. &Lord, C.O. The effect of hexafluorenium in preventing the increase in intraocular pressure produced by succinylcholine. Anesthesiology29: 70–78 (1968).PubMedCrossRefGoogle Scholar
  26. 26.
    Miller, R.D., Way, W.L. &Hickey, R.F. Inhibition of succinylcholine induced intraocular pressure by non-depolarizing muscle relaxants. Anaesthesiology29: 123–126 (1968).Google Scholar
  27. 27.
    Savarese, J.J. The new neuromuscular blocking drugs are here. Anesthesiology55: 1–3 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    Fahey, M.R., Morris, R.B., Miller, R.D., Sohn, Y.J., Cronnelly, R. &Gencarelli, P. Clinical Pharmacology of ORG NC 45 (Norcuron). A new nondepolarizing muscle relaxant. Anesthesiology55: 6–11 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1982

Authors and Affiliations

  • Anthony J. Cunningham
    • 1
  • Patrick Kelly
    • 1
  • James Farmer
    • 1
  • A. Garner Watson
    • 1
  1. 1.Department of OphthalmologyOttawa Health Science Centre General HospitalOttawa

Personalised recommendations