Canadian Journal of Anaesthesia

, Volume 38, Issue 3, pp 384–400 | Cite as

Perioperative functional residual capacity

  • R. W. M. Wahba
Review Articles


The literature dealing with the magnitude, mechanism and effects of reduced FRC in the perioperative period is reviewed. During general anaesthesia FRC is reduced by approximately 20%. The reduction is greater in the obese and in patients with COPD. The most likely mechanism is the loss of inspiratory muscle tone of the muscles acting on the rib cage. Gas trapping is an additional mechanism. Lung compiance decreases and airways resistance increases, in large part, due to decreased FRC. The larynx is displaced anteriorly and elongated, making laryngoscopy and intubation more difficult. The change in FRC creates or increases intrapulmonary shunt and areas of low ventilation to perfusion. This is due to the occurrence of compression atelectasis, and to regional changes in mechanics and airway closure which tend to reduce ventilation to dependent lung zones which are still well perfused. Abdominal and thoracic operations tend to increase shunting further. Large tidal volume but not PEEP will improve oxygenation, although both increase FRC. Both FRC and vital capacity are reduced following abdominal and thoracic surgery in a predictable pattern. The mechanism is the combined effect ofincisional pain and reflex dysfunction of the diaphragm. Additional effects of thoracic surgery include pleural effusion, cooling of the phrenic nerve and mediastinal widening. Postoperative hypoxaemia is a function of reduced FRC and airway closure. There is no real difference among the various methods of active lung expansion in terms of the speed of restoration of lung function, or in preventing postoperative atelectasis/pneumonia. Epidural analgesia does not influence the rate of recovery of lung function, nor does it prevent atelectasis/pneumonia.

Key words

Hypoxia: postoperative Lung: functional residual capacity Ventilation: anaesthetics, effects of diaphragm oxygen tension, positive end-expiratory pressure, shunting 


La littérature concernant l’importance, le mécanisme et les effets de la réduction de la capacité résiduelle fonctionnelle en période périopératoire est revue. Durant l’anesthésie générale, la CRF est rédidte de 20% approximativement. Cette réduction est plus grande chez les obeses et les patients ayant une maladie pulmonaire obstructive chronique. Le mécanisme le plus probable serait la perte du tonus musculaire inspiratoire des muscles agissant sur la cage thoracique. La captation des gaz serait un mécanisme additionnel. La compliance pulmonaire diminue et la résistance des voies aeriennes augmente en grande partie a cause de la diminution de la CRF. Le larynx est déplacé antérieurement et étiré rendant la laryngoscopie et rendant l’ intubation plus difficiles. Les changements de la CRF créent et augmentent le shunt intrapulmonaire et les régions ayant un bon ratio de ventilation sur perfusion. Ceci est dû à la survenue de l’atélectasie par compression et à des changements régionaux mécaniques et la fermeture des voies aériennes qui tendent à reduire la ventilation aux zones pulmonaires dépendantes qui sont encore bien perfusées. Les opérations abdominales et thoraciques tendent à augmenter davantage le shunt. Le grand volume courant mais non la PEEP améliorerait l’oxygénation même s’il augmente la CRF. Tant la CRF que la capacité vitale sont réduites après chirurgie abdominale et thoracique d’une facon prévisible. Le mécanisme serait l’effet combiné de la douleur incisionnelle et la dysfonction réflexe du diaphragme. Les effets additionnels de la chirurgie thoracique incluent l’epanchement pleural, le refroidissement du nerf phrénique et l’élargissement médiastinal. L’hypoxémie postopératoire est en fonction de la diminution de la CRF et de la fermeture des voies aériennes. Il n’y avail aucune différence réelle entre les différentes méthodes d’expansion active du poumon concernant la rapidité de la restauration de la fonction pulmonaire ou dans la prevention de l’atélectasie postopératoire-pneumonie. L’analgésie épidurale n’influence pas le taux de récupération de la fonction pulmonaire ni ne prévient l’atélectasie-pneumonie.


  1. 1.
    Craig DB, Wahba WM.Don HF, Coulure J, Becklake MR. “Closing volume” and its relationship to gas exchange in seated and supine subjects. J. Appl Physiol 1971; 31: 717–21.PubMedGoogle Scholar
  2. 2.
    Muller N, Volgyesi G, Becker L, Bryan MH, Bryan AC. Diaphragmatic muscle tone. J Appl Physiol 1979; 47: 279–84.PubMedGoogle Scholar
  3. 3.
    DeTroyer A, Bastenier J, Delhez L. Function of respiratory muscles during partial curarization in humans. J Appl Physiol 1980; 49: 1049–56.Google Scholar
  4. 4.
    Briscoe WA, Dubois AB. The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 1958; 37: 1279–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Behrakis PK, Baydur A, Jaeger MJ, Milic-Emiti J. Lung mechanics in sitting and horizontal body positions. Chest 1983; 83: 643–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Wahba WM. The influence of aging on lung function — clinical significance of changes from age twenty. Ancsth Analg 1983; 62: 764–6.Google Scholar
  7. 7.
    Don HF, Craig DB, Wahba WM, Couture JG. The measurement of gas trapped in the lungs at functional residual capacity and the effect of posture. Anesthcsiology 1971; 35: 582–90.Google Scholar
  8. 8.
    Rehder K, Knopp TJ, Sessler AD. Regional intrapulmonary gas distribution in awake and anaesthetized-paralyzed prone man. J Appl Physiol 1979; 45: 528–38.Google Scholar
  9. 9.
    Druz WS, Sharp JT. Activity of respiratory muscles in upright and recumbent humans. J Appl Physiol 1981; 52: 1552–61.CrossRefGoogle Scholar
  10. 10.
    Drummond GB. Chest wall movements in anaesthesia. Eur J Anaesthesiol 1989; 6: 1661–96.Google Scholar
  11. 11.
    Don HF, Wahba WM, Cuadrado L et al. The effects of anesthesia and 100 per cent oxygen on the functional residual capacity of the lungs. Anesthcsiology 1970; 32: 521–9.CrossRefGoogle Scholar
  12. 12.
    Don HF, Wahba WM, Craig DB. Airway closure, gas trapping, and the functional capacity during anesthesia. Anesthesiology 1972; 36: 533–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Hickey RF, Visick WD, Fairley HB, Fourcade HE. Effects of halothane anesthesia on functional residual capacity and alveolar-arterial oxygen tension difference. Anesthesiology 1973; 38: 20–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Hewlett AM, Hulands GH, Nunn JF, Heath JR. Functional residual capacity during anaesthesia II: spontaneous respiration. Br J Anacsth 1974; 46: 486–94.CrossRefGoogle Scholar
  15. 15.
    Hewlett AM, Hulands GH, Nunn JF, Milledge JS. Functional residual capacity during anaesthesia III: artificial ventilation. Br J Anacsth 1974; 46: 495–503.CrossRefGoogle Scholar
  16. 16.
    Weening CP, Pietak S, Hickey RF, Farley HB. Relationship of preoperative closing volume to functional residual capacity and alveolar-arterial oxygen tension difference during anesthesia with controlled ventilation. Anesthesiology 1974; 41: 3–7.CrossRefGoogle Scholar
  17. 17.
    Gilmour I, Burnham M, Graig DB. Closing capacity measurement during anesthesia. Anesthesiology 1976; 45: 277–82.CrossRefGoogle Scholar
  18. 18.
    Westbrooke PR, Stubbs SE, Sessler AD, Rehder K, Hyatt RE. Effects of anesthesia and muscle paralysis on respiratory mechanics in normal man. J Appl Physiol 1973; 34: 81–6.Google Scholar
  19. 19.
    Rehder K, Mallow JE, Fibush EE, Krabill DR, Sessler AD. Effects of isoflurane anesthesia and muscle paralysis on respiratory mechanics in normal man. Anesthesiology 1974; 41: 477–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Bergman NA. Reduction in resting end-expiratory position of the respiratory system with induction of anesthesia and neuromuscular paralysis. Anesthesiology 1982; 57: 14–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Hendenstierna G, McCarthy G, Bergstrom M. Airway closure during mechanical ventialtion. Anesthcsiology 1976; 44: 114–23.Google Scholar
  22. 22.
    Hendenstierna G, Santesson J. Airway closure during anesthesia: a comparison between resident-gas and argon-bolus techniques. J Appl Physiol 1979; 47: 878–81.Google Scholar
  23. 23.
    Juno P, Marsh M, Knopp TJ, Rehder K. Closing capacity in awake and anaesthetized-paralyzed man. J Appl Physiol 1978; 44: 238–44.PubMedGoogle Scholar
  24. 24.
    Manikian B, Cantineau JP, Sartene R, Clergue F, Viars P. Ventilatory pattern and chest wall mechanics during kctamine anesthesia in man. Anesthcsiology 1986; 65: 492–9.CrossRefGoogle Scholar
  25. 25.
    Shulman D, Bar-Yoishay E, Beardsmore C, Godfrey S. Determinants of end expiratory volume during ketaminc or halothane anesthesia. Anesthesiology 1987; 66: 636–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Damia G, Mascheroni M, Croci M, Tarenzi L. Perioperative changes in functional residual capacity in morbidly obese patients. Br J Anaesth 1988; 60: 574–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Bickler PE, Dueck R, Prutow RJ. Effects of barbiturate anesthesia on function residual capacity and rib cage/diaphragm contributions to ventilation. Anesthesiology 1987; 66: 147–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Dueck R, Prutow RJ, Davies NJH, Clausen JL, Davidson TM. The lung volume at which shunting occurs with inhalation anesthesia. Anesthesiology 1988; 69: 854–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Hedenstierna G, Strandgerg A, Brismar B, Lundquist MD, Svensson L, Tokics L. Functional residual capacity, thoracoabdominal dimensions, and central blood volume during general anesthesia with muscle paralysis and mechanical ventilation. Anesthcsiology 1985; 62: 247–54.Google Scholar
  30. 30.
    Hedenstierna G, Santesson J, Norlander O. Airway closure and distribution of inspired gas in the extremely obese, breathing spontaneously and during anaesthesia with intermittent positive pressure ventilation. Acta Anaesthesiol Scand 1976; 20: 334–42.PubMedGoogle Scholar
  31. 31.
    Gold MI, Helrich M. Pulmonary compliance during anesthesia. Anesthcsiology 1965; 26: 281–8.Google Scholar
  32. 32.
    Wyche MQ, Teichner RL, Kallos T, Marshall BE, Smith TC. Effects of continuous positive pressure breathing on functional residual capacity and arterial oxygenation during intra-abdominal operations. Anesthesiology 1973; 38: 68–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Heneghan CPH, Bergman NA, Jones JG. Changes in lung volume and (PAO2-PaC2 during anaesthesia. Br J Anaesth 1984; 56: 437–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Rehder K, Sittipong R, Sessler AD. The effects of thiopcntal-meperidine anesthesia with succinylcholine paralysis on functional residual capacity and dynamic lung compliance in normal sitting man. Anesthcsiology 1972; 37: 395–8.Google Scholar
  35. 35.
    Jonmarker C, Nordstrom L, Werner O. Changes in functional residual capacity during cardiac surgery. Br J Anaesth 1986; 58: 428–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Dueck R, Young I, Clausen J, Wagner PD. Altered distribution of pulmonary ventilation and blood flow following induction of inhalation anesthesia. Anesthesiology 1980; 52: 113–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Hedenstierna G, Lundh R, Johansson H. Alveolar stability during anesthesia for reconstructive vascular surgery of the leg. Acta Anaesthesiol Scand 1983; 27: 26–34.PubMedGoogle Scholar
  38. 38.
    Lundh R, Hedenstierna G, Strandberg A et al. Ventilation-perfusion relationships during anesthesia and abdominal surgery. Acta Anaesthesiol Scand 1983; 27: 167–73.PubMedGoogle Scholar
  39. 39.
    Drummond GB. Reduction of tonic rib cage muscle activity by anesthesia with thiopcntal. Anesthcsiology 1987; 67; 695–700.CrossRefGoogle Scholar
  40. 40.
    Germain M, Wahba WM, Gillies DMMG. Ventilation following induction of general anaesthesia by thiopentone. Can Anaesth Soc J 1982; 29: 100–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 1974; 41: 242–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Krayer S, Rehder K, Vettermann J, Didier EP, Ritman E. Postition and motion of the human diaphragm during anesthesia paralysis. Anesthesiology 1989; 70: 891–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Logan MR, Allan PL, Drummond GB. Changes in diaphragmatic postition in association with the induction of anaesthesia. Br J Anaesth 1986; 58: 1246–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Vellody VPS, Nassery M, Balasaraswathi K, Goldberg NB, Sharp JT. Compliances of the human rib cage and diaphragm-abdomen pathways in the relaxed versus paralyzed states. Am Rev Respir Dis 1978; 118: 479–91.PubMedGoogle Scholar
  45. 45.
    Krayer S, Rehder K, Beck KC, Cameron PD, Didier EP, Hoffman EA. Quantification of thoracic volumes by three-dimensional imaging. J Appl Physiol 1987; 62: 591–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Hedenstierna G, Lofstrom D, Lundh R. Thoracic gas volume and chest-abdomen dimensions during anesthesia and muscle paralysis. Anesthesiology 1981; 55: 499–506.PubMedGoogle Scholar
  47. 47.
    Logan MR, Brown DT, Newton I, Drummond GB. Stereophotogrammctric analysis of changes in body volume associated with the induction of anaesthesia. Br J Anaesth 1987; 59: 288–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Drummond GB, Park GR. Changes in intragastric pressure on induction of anaesthesia. Br J Anacsth 1984; 56: 873–9.CrossRefGoogle Scholar
  49. 49.
    Froese AB. Anesthesia-paralysis and the diaphragm: in pursuit of an elusive muscle (Editorial). Ancsthesiology 1989; 70: 887–90.CrossRefGoogle Scholar
  50. 50.
    De Troyer A, Sampson M, Sigrist S, Macklem PT. The diaphragm: two muscles. Science 1981; 213: 237–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaul SU, Heath JR, Nunn JF. Factors influencing the development of expiratory muscle activity during anaesthesia. Br J Anaesth 1973; 45: 1013–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Freund F, Roos A, Dodd RB. Expiratory activity of the abdominal muscles in a man during general anesthesia. J Appl Physiol 1964; 19: 693–7.PubMedGoogle Scholar
  53. 53.
    Jones JG, Faithfull D, Jordan C, Minty B. Rib cage movement during halothane anaesthesia in man. Br J Anaesth 1979; 51: 399–407.PubMedCrossRefGoogle Scholar
  54. 54.
    Hedenstierna G, Johansson H, Linde B. Central blood volume as an explanation for lowered FRC during anesthesia? Thigh volume measurements by plethysmography. Acta Anaesthesiol Scand 1982; 26: 633–7.PubMedGoogle Scholar
  55. 55.
    Drummond GB, Pye DW, Annan FJ, Tothill P. Changes in blood volume distribution associated with general anaesthesia. Br J Anaesth 1988; 60: 33IP.CrossRefGoogle Scholar
  56. 56.
    Gal TJ, Surratt PM. Resistance to breathing in healthy subjects following endotracheal intubation under topical anesthesia. Anesth Analg 1980; 59: 270–4.PubMedGoogle Scholar
  57. 57.
    Waltmath CL, Bergman NA. Respiratory compliance in obese patients. Anesthesiology 1974; 41: 84–5.Google Scholar
  58. 58.
    Beydour A, Sassoon CSH, Stiles CM. Partitioning of respiratory mechanics in young adults. Effects of duration of anesthesia. Am Rev Respir Dis 1987; 135: 165–72.Google Scholar
  59. 59.
    Behrakis PK, Higgs BD, Bevan DR, Milic-Emili J. Partitioning of respiratory mechanics in halothane-anesthetized humans. J Appl Physiol 1985; 58: 285–9.PubMedGoogle Scholar
  60. 60.
    Behrakis PK, Higgs BD, Baydour A, Zin WA, Milic-Emili J. Repiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J Appl Physiol 1983; 55: 1085–92.PubMedGoogle Scholar
  61. 61.
    Hendenstierna G, McCarthy G. Mechanics of breathing, gas distribution and functional residual capacity at different frequencies of respiration during spontaneous and artificial ventilation. Br J Anacsth 1975; 47: 706–12.CrossRefGoogle Scholar
  62. 62.
    Lehane JR, Jordan J, Jones JG. Influence of halothane and enflurane on respiratory airflow resistance and specific conductance in anaesthetized man. Br J Anacsth 1980; 52: 773–80.CrossRefGoogle Scholar
  63. 63.
    Pietak S, Weenig CS, Hickey RF, Fairley HB. Anesthetic effects on ventilation in patients with chronic obstructive pulmonary disease. Anesthesiology 1975; 42: 160–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Wahba WM. Influence of airway resistance and ventilatory pattern on PaCO2 during enflurane anaesthesia. Br J Anaesth 1979; 51: 123–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Sivarajan M, Fink BR. The position and the state of the larynx during general anesthesia and muscle paralysis. Anesthesiology 1990; 72: 439–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Frumin MJ, Bergman NA, Holaday DA et al. Alveolar-arterial O2 differences during artificial respiration in man. J Appl Physiol 1959; 14: 694–700.PubMedGoogle Scholar
  67. 67.
    Bendixen HH, Hedley-Whyte J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation: a concept of atelectasis. N Engl J Med 1963; 269: 991–6.PubMedGoogle Scholar
  68. 68.
    Panday J, Nunn JF. Failure to demonstrate progressive falls of arterial PO2 during anaesthesia. Anaesthesia 1968; 23: 38–46.CrossRefGoogle Scholar
  69. 69.
    Brismar B, Hedenstierna G, Linquist H, Strandberg A, Svensson L, Tokics L. Pulmonary densities during anesthesia with musclular relaxation — a proposal of atelectasis. Anesthesiology 1985; 672: 422–8.CrossRefGoogle Scholar
  70. 70.
    Gunnarsson L, Strandberg A, Brismar B, Tokics L, Lundquist H, Hedenstierna G. Atelectasis and gas exchange impairment during enfluane/nitrous oxide anaesthesia. Acta Anaesthesiol Scand 1989; 33: 629–37.PubMedGoogle Scholar
  71. 71.
    Strandberg A, Tokics L, Brismar B, Lundquist H, Hedenstierna G. Atelectasis during anaesthesia and in the postoperative period. Acta Anaesthesiol Scand 1986; 30: 154–8.PubMedGoogle Scholar
  72. 72.
    Strandberg A, Hedenstierna G, Tokics L, Lundquist H, Brismar B. Densities in dependent lung regions during anaesthesia: atelectasis or fluid accumulation? Acta Anaesthesiol Scand 1986; 30: 256–9.PubMedGoogle Scholar
  73. 73.
    Hedenstierna G, Tokics L, Strandberg H, Lundquist H, Brismar B. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand 1986; 30: 183–91.PubMedGoogle Scholar
  74. 74.
    Tokics L, Hedenstierna G, Strandberg A, Brismar BO, Lundquist H. Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis and positive end-expiratory pressure. Anesthesiology 1987; 66: 157–67.PubMedCrossRefGoogle Scholar
  75. 75.
    Tokics L, Strandberg A, Brismar B, Lunquist H, Hedenstierna G. Computerized tomography of the chest and gas exchange measurements during ketamine anaesthesia. Acta Anaesthesiol Scand 1987; 31: 684–92.PubMedGoogle Scholar
  76. 76.
    Gunnarsson L, Tokics L, Lundquist H et al. Chronic obstructive pulmonary disease and anaesthesia — formation of atelectasis and gas exchange impairment. Acta Anaesthesiol Scand (In press).Google Scholar
  77. 77.
    Standberg A, Tokics L, Brismar B, Lundquist H, Hedenstierna G. Constitutional factors promoting development of atelectasis during anaesthesia. Acta Anaesthesiol Scand 1987; 31: 21–4.Google Scholar
  78. 78.
    Bergman NA, Tien YK. Contributions of the closure of pulmonary units to impaired oxygenation during anesthesia. Anesthesiology 1983; 59: 395–401.PubMedCrossRefGoogle Scholar
  79. 79.
    Forkent L, Dhinger B, Anthonisen NR. Airway closure and closing volume. J Appl Physiol 1979; 42: 391–402.Google Scholar
  80. 80.
    Nunn JF, Williams IP, Jones JG et al. Detection and reversal of pulmonary absorption collapse. Br J Anaesth 1978; 50: 91–100.PubMedCrossRefGoogle Scholar
  81. 81.
    Binslev L, Hedenstierna G, Santisson J, Norlander O, Gram I. Airway closure during anaesthesia and its prevention by positive end expiratory pressure. Acta Anacsthesiol Scand 1980; 24: 199–205.CrossRefGoogle Scholar
  82. 82.
    Visick WD, Fairley HB, Hickey RF. The effects of tidal volume and end expiratory pressure on pulmonary gas exchange during anesthesia. Anesthesiology 1973; 39: 285–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Fletcher R. Gas exchange during thoracotomy in children. A study using the single-breath test for CO2. Acta Anacsthesiol Scand 1987; 31: 391–6.Google Scholar
  84. 84.
    Craig DB. Postoperative recovery of pulmonary function. Anesth Analg 1981; 60: 46–52.PubMedGoogle Scholar
  85. 85.
    Kitamura H, Sawa T, Ikezomo E. Postoperative hypoxemia: the contribution of age to the maldistribution of ventilation. Anesthesiology 1972; 36: 244–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Vaughan RW, Engelhardt RC, Wise L. Postoperative hypoxemia in obese patients. Ann Surg 1974; 180: 877–82.PubMedCrossRefGoogle Scholar
  87. 87.
    Alexander JI, Spence AA, Parikh RK et al. The role of airway closure in postoperative hypoxaemia. Br J Anaesth 1973; 45: 34–40.PubMedCrossRefGoogle Scholar
  88. 88.
    Catley DM, Thornton C, Jordan C et al. Pronounced, episodic oxygen desaturation in the postoperative period: its association with vcntilatory pattern and analgesic regimen. Anesthesiology 1985; 63: 20–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Gamsu G, Singer MM, Vincent HH, Berry S, Nadel JA. Postoperative impairment of mucus transport in the lung. Am Rev Respir Dis 1976; 114: 673–9.PubMedGoogle Scholar
  90. 90.
    Tahir AA, George RB, Weill H, Adriani J. Effects of abdominal surgery upon diaphragmatic function and regional ventilation. Am Rev Respir Dis 1983; 127: 431–6.Google Scholar
  91. 91.
    Ali J, Weisel RD, Layug AB, Kripke BJ, Hechtman HB. Consequences of postoperative alterations in repiratory mechanics. Am J Surg 1974; 128: 376–82.PubMedCrossRefGoogle Scholar
  92. 92.
    Bonnet F, Blery CH, Zatan O, Brage D, Gaudy JH. Effect of epidural morphine on postoperative pulmonary dysfunction. Acta Anasthesiol Scand 1984; 28: 147–51.Google Scholar
  93. 93.
    Wahba MW, Craig DB, Don HF, Becklake MR. The cardiorespiratory effects of thoracic epidural anaesthesia. Can Anaesth Soc J 1972; 19: 8–19.PubMedCrossRefGoogle Scholar
  94. 94.
    Wahba MW, Don HF, Craig DB. Postoperative epidural analgesia: effects on lung volumes. Can Anaesth Soc J 1975; 22: 519–27.PubMedCrossRefGoogle Scholar
  95. 95.
    Benhamou D, Samii K, Noviant Y. Effect of analgesia on respiratory muscle function after upper abdominal surgery. Acta Anaesthcsiol Scand 1983; 27: 22–5.Google Scholar
  96. 96.
    Ford GT, Whitelaw WA, Rosenal TW, Cruse PJ, Guenther CA. Diaphragm function after upper abdominal surgery in humans. Am Rev Respir Dis 1983; 127: 431–6.PubMedGoogle Scholar
  97. 97.
    Simonneau G, Vivien A, Sartene R et al. Diaphragmatic dysfunction induced by upper abdominal surgery. Role of postoperative pain. Am Rev Respir Dis 1983; 128: 899–903.PubMedGoogle Scholar
  98. 98.
    Dureuil B, Cantineau JP, Desmonts JM. Effects of upper or lower abdominal surgery on diaphragm function. Br J Anaesth 1987; 59: 1230–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Dureuil B, Viires N, Cantineau JP, Augier M, Desmonts JM. Diaphragmatic contractility after upper abdominal surgery. J Appl Physiol 1986; 49: 1775–80.Google Scholar
  100. 100.
    Mankikian B, Cantineau JP, Bertrand M et al. Improvement of diaphragmatic function by a thoracic extradural block after upper abdominal surgery. Anesthesiology 1988; 68: 379–86.CrossRefGoogle Scholar
  101. 101.
    Clergue F, Montembault C, Despierres O, Ghesquiere F, Harari A, Viars P. Respiratory effects of intrathecal morphine after upper abdominal surgery. Anesthesiology 1984; 61: 677–85.PubMedCrossRefGoogle Scholar
  102. 102.
    Duggan JE, Drummond GB. Abdominal muscle activity and intraabdominal pressure after upper abdominal surgery. Anesth Analg 1989; 69: 598–603.PubMedCrossRefGoogle Scholar
  103. 103.
    Meyers JR, Lembeck L, O’Kane H, Bauer AE. Changes in functional residual capacity of the lung after operation. Arch Surg 1975; 110: 576–83.PubMedGoogle Scholar
  104. 104.
    Wiren JE, Janzon L. Respiratory complications following surgery. Improved prediction with prcoperative spirometry. Acta Anacsthesiol Scand 1983; 27: 476–9.Google Scholar
  105. 105.
    Stock MC, Downs JB, Gauer PK et al. Prevention of postoperative pulmonary complication with CPAP, incentive spirometry and conservative therapy. Chest 1985; 87: 151–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Stock MC, Downs JB, Cooper RB et al. Comparison of continuous positive airway pressure, incentive spirometry and conservative therapy after cardiac operation. Crit Care Med 1984; 12: 969–72.PubMedGoogle Scholar
  107. 107.
    Celli BR, Rodriguez KS, Snider GL. A controlled trial of intermittent positive pressure breathing, incentive spirometry and deep breathing exercises in preventing pulmonary complications after abdominal surgery. Am Rev Respir Dis 1984; 130: 12–5.PubMedGoogle Scholar
  108. 108.
    Jayr C, Mollie A, Bourgain JL et al. Postoperative pulmonry complications: general anesthesia with postoperative parenteral morphine compared with epidural analgesia. Surgery 1988; 104: 57–63.PubMedGoogle Scholar
  109. 109.
    Shulman MS, Sandier AN, Bradley JW, Young PS, Brebner J. Postthoracotomy pain and pulmonary function following epidural and systemic morphine. Anesthesiology 1984; 61: 569–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Hasenbos M, van Egmond J, Gielen M, Crul JF. Post-operative analgesia by epidural versus intramuscular nicomorphine after thoracotomy. Part II. Acta Anaesthesiol Scand 1985; 29: 577–82.PubMedGoogle Scholar
  111. 111.
    Hasenbos M, van Egmond J, Gielen M, Crul JF. Post-operative analgesia by high thoracic epidural versus intramuscular nicomorphine after thoracotomy. Part III. Acta Anaesthesiol Scand 1987; 31: 608–15.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1991

Authors and Affiliations

  • R. W. M. Wahba
    • 1
  1. 1.Department of AnaesthesiaQueen Elizabeth Hospital and McGill UniversityMontrealCanada

Personalised recommendations