Douleur et Analgésie

, Volume 18, Issue 4, pp 143–149

Explorations électrophysiologiques dans les douleurs neuropathiques

Article
  • 35 Downloads

Résumé

La prise en charge diagnostique et thérapeutique des douleurs neuropathiques reste difficile car les lésions causales ne sont pas toujours clairement identifiées. Dans le cas des atteintes périphériques, l’électrophysiologie et en particulier l’électromyographie tiennent une place essentielle dans l’identification des fibres nerveuses impliquées et dans le suivi de leurs lésions. L’impact sur les phénomènes de sensibilisation des centres médullaires peut également être apprécié par l’exploration des réflexes de flexion en déterminant leurs seuils d’apparition et leurs caractéristiques de facilitation après stimulations répétitives. Cette revue a pour objectif de décrire de façon pratique ces méthodes de quantification et de décrire les principales étiologies périphériques en cause.

Mots-clés

Douleurs neuropathiques électromyographie réflexe nociceptif de flexion neuropathies périphériques 

Summary

The diagnosis and the treatment of neuropathic pains may be difficult because the initial lesion of the nervous system isn’t always clearly identified. In the case of peripheral neuropathy, electrophysiological methods and more specifically electromyography plays a central role in the identification of the damaged fibers as well as the follow up of their lesions. Moreover, the central impact of peripheral disease on the spinal cord sensitization can also be evaluated through the study of nociceptive flexion reflexes, their thresholds and facilitation features after repetitive stimulations. This review will describe these methods from a very practical point of view and describe the most frequent peripheral etiology of painful neuropathies.

Key-words

Neuropathic pain electromyography nociceptive reflexion reflex peripheral neuropathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Kakigi R, Inui K, et al. Electrophysiological studies on human pain perception. Clin Neurophysiol 2005; 116: 743–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Willer JC. Nociceptive flexion reflexes as a tool for pain research in man. Adv Neurol 1983; 39: 809–27.PubMedGoogle Scholar
  3. 3.
    Willer JC. Clinical exploration of nociception with the use of reflexologic techniques. Neurophysiol Clin 1990; 20: 335–56.PubMedCrossRefGoogle Scholar
  4. 4.
    Kenton B, Coger R, et al. Peripheral fiber correlates to noxious thermal stimulation in humans. Neurosci Lett 1980; 17: 301–6.PubMedCrossRefGoogle Scholar
  5. 5.
    De Broucker T, Cesaro P, et al. Diffuse noxious inhibitory controls in man. Involvement of the spinoreticular tract. Brain 1990; 113: 1223–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Millan MJ. Endorphins and nociception: An overview. Methods Find Exp Clin Pharmacol 1982; 4: 445–62.PubMedGoogle Scholar
  7. 7.
    Millan MJ. The induction of pain: An integrative review. Prog Neurobiol 1999; 57: 1–164.PubMedCrossRefGoogle Scholar
  8. 8.
    Krarup C. An update on electrophysiological studies in neuropathy. Curr Opin Neurol 2003; 16: 603–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Lauria G. Small fiber neuropathies. Curr opin Neurol 2005; 19: 591–7.CrossRefGoogle Scholar
  10. 10.
    Danilov A, Sandrini G, et al. Bilateral sympathetic skin response following nociceptive stimulation: Study in healthy individuals. Funct Neurol 1994; 9: 141–51.PubMedGoogle Scholar
  11. 11.
    Garcia-Larrea L, Mauguiere F. Electrophysiological assessment of nociception in normals and patients: The use of nociceptive reflexes. Electroencephalogr Clin Neurophysiol 1990; (Suppl.) 41: 102–18.Google Scholar
  12. 12.
    Kugelberg E, Eklund K, et al. An electromyographic study of the nociceptive reflexes of the lower limb. Mechanism of the plantar responses. Brain 1960; 83: 394–410.PubMedCrossRefGoogle Scholar
  13. 13.
    Hugon M. Exteroceptive reflexes to stimulation of the sural nerve in normal man. In: New development in electromyography and clinical neurophysiology, Desmedt JE Eds, vol. 3 p. 713–29 (Kargem Basel 973).Google Scholar
  14. 14.
    Arendt-Nielsen L, Sonnenborg FA, et al. Facilitation of the withdrawal reflex by repeated transcutaneous electrical stimulation: An experimental study on central integration in humans. Eur J Appl Physiol 2000; 81: 165–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Plaghki L, Bragard D, et al. Facilitation of a nociceptive flexion reflex in man by non-noxious radiant heat produced by a laser. J Neurophysiol 1998; 79: 2557–67.PubMedGoogle Scholar
  16. 16.
    Sonnenborg FA, Andersen OK, et al. Withdrawal reflex organisation to electrical stimulation of the dorsal foot in humans. Exp Brain Res 2001; 136: 303–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Andersen OK, Sonnenborg FA, et al. Reflex receptive fields for human withdrawal reflexes elicited by non-painful and painful electrical stimulation of the foot sole. Clin Neurophysiol 2001; 112: 641–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Willer JC, Bathien N. Determination of an indiction of pain by the sapheno-bicipital reflex method: Physiological and pharmacological variations. Electromyogr, Clin Neurophysiol 1975; 15: 127–35.Google Scholar
  19. 19.
    Eklund K, Grimby L, et al. Nociceptive reflexes of the human foot. The plantar responses. Acta Physiol Scand 1959; 47: 297–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Willer JC, Comparative study of perceived pain and nociceptive flexion reflex in man. Pain 1977; 3: 69–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Willer JC, Roby A, et al. Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic nociceptive stimuli. Brain 1984; 107: 1095–112.PubMedCrossRefGoogle Scholar
  22. 22.
    Chan CW, Dallaire M. Subjective pain sensation is linearly correlated with the flexion reflex in man. Brain Res 1989; 479: 145–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Facchinetti F, Sandrini G, et al. Concomitant increase in nociceptive flexion reflex threshold and plasma opioids following transcutaneous nerve stimulation. Pain 1984; 19: 295–303.PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia-Larrea L, Charles N, et al. Flexion reflexes following anterolateral cordotomy in man: Dissociation between pain sensation and nociceptive reflex RIII. Pain 1993; 55: 139–49.PubMedCrossRefGoogle Scholar
  25. 25.
    Willer JC, Bathien N. Pharmacological modulations on the nociceptive flexion reflex in man. Pain 1977; 3:111–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Le Bars D, Willer JC, et al. Morphine blocks descending pain inhibitory controls in humans. Pain 1992; 48: 13–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Serrao M, Rossi P, et al. Effects of diffuse noxious inhibitory controls on temporal summation of the RIII reflex in humans. Pain 2004; 112: 353–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Willer JC, De Broucker T, et al. Central analgesic effect of ketoprofen in humans: Electrophysiological evidence for a supraspinal mechanism in a double-blind and cross-over study. Pain 1989; 38: 1–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Willer JC, Boureau F, et al. Supraspinal influences on nociceptive flexion reflex and pain sensation in man. Brain Res 1979; 179: 61–8.PubMedCrossRefGoogle Scholar
  30. 29.
    Roby-Brami A, Bussel B, et al. An electrophysiological investigation into the pain-relieving effects of heterotopic nociceptive stimuli. Probable involvement of a supraspinal loop. Brain 1987; 110: 1497–508.PubMedCrossRefGoogle Scholar
  31. 31.
    Innocenti P, Fucito G, et al. Changes in the RIII response of the flexion reflex with painful maneuvers. Boll Soc Ital Biol Sper 1990; 66: 239–45.PubMedGoogle Scholar
  32. 32.
    Bouhassira D, Le Bars D, et al. Diffuse noxious inhibitory controls in humans: A neurophysiological investigation of a patient with a form of Brown-Sequard syndrome. Ann Neurol 1993; 34: 536–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Willer JC, Studies on pain. Effects of morphine on a spinal nociceptive flexion reflex and related pain sensation in man. Brain Res 1985; 331: 105–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Bathien N, Willer JC. Action of various types of analgesics on the cutaneous flexion reflex in man. (Method allowing the determination of the neural mechanism of action of analgesics). Therapie 1974; 29: 709–17.PubMedGoogle Scholar
  35. 35.
    Bossard AE, Guirimand F, et al. Interaction of a combination of morphine and ketamine on the nociceptive flexion reflex in human volunteers. Pain 2002; 98: 47–57.PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Larrea L, Sindou M, et al. Nociceptive flexion reflexes during analgesic neurostimulation in man. Pain 1989; 39: 145–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Willer JC, Boureau F, et al. Nociceptive flexion reflexes elicited by noxious laser radiant heat in man. Pain 1979; 7: 15–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Sandrini G, Alfonsi E, et al. Age-related changes in excitability of nociceptive flexion reflex. An electrophysiological study in schoolage children and young adults. Funct Neurol 1989; 4: 53–8.PubMedGoogle Scholar
  39. 39.
    Sandrini G, Alfonsi E, et al. Circadian variations of human flexion reflex. Pain 1986; 25: 403–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Jaaskelainen SK. The utility of clinical neurophysiological and quantitative sensory testing for trigeminal neuropathy. J Orofac Pain 2004; 18: 355–9.PubMedGoogle Scholar
  41. 41.
    Bromm B, Treede RD. Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 1984; 3: 33–40.PubMedGoogle Scholar
  42. 42.
    Cruccu G, Garcia-Larrea L. Clinical utility of pain-laser evoked potentials. Clin Neurophysiol 2004; 57 (Suppl.): 101–10.Google Scholar
  43. 43.
    Yen CT, Huang CH, et al. Surface temperature change, cortical evoked potential and pain behavior elicited by CO2 lasers. Chin J Physiol 1994; 37: 193–9.PubMedGoogle Scholar
  44. 44.
    De Broucker T, Willer JC. Comparative study of the nociceptive reflex and late components of the evoked somatosensory potential during stimulation of the sural nerve in healthy subjects. Rev Electroencephalogr Neurophysiol Clin 1985; 15: 149–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Tran TD, Inui K, Hoshiyama M, Lam K, Kakigi R. Conduction velocity of the spinothalamic, tract following CO2 laser stimulation of C-fibers in humans. Pain 2002; 95: 125–31.PubMedCrossRefGoogle Scholar
  46. 46.
    Bromm B, Neitzel H, et al. Evoked cerebral potential correlates of C-fibre activity in man. Neurosci Lett 1983; 43: 109–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu X, Kanda M, et al. Pain-related somatosensory evoked potentials following CO2 laser stimulation of foot in man. Electroencephalogr Clin Neurophysiol 1995; 96:12–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Durak K, Chen AC, et al. 3D topographic study of the diode laser evoked potentials (LEPs) to painful stimulation of the trigeminal sensory area. Brain Topogr 2004; 16: 133–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Valeriani M, Restuccia D, et al. Attention-related modifications of ultra-late CO (2) laser evoked potentials to human trigeminal nerve stimulation. Neurosci Lett 2002; 329: 329–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Valeriani M, Barba C, et al. Different neuronal contribution to N20 somatosensory evoked potential and to CO2 laser evoked potentials: an intracerebral recording study. Clin Neurophysiol 2004; 115: 211–6PubMedCrossRefGoogle Scholar
  51. 51.
    Garcia-Larrea L, Convers P, et al. Laser-evoked potential abnormalities in central pain patients: The influence of spontaneous and provoked pain. Brain 2002; 125: 2766–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Mendell JR, Sahenk Z. Clinical practice., Painful sensory neuropathy. N Engl J Med 2003; 348: 1243–55.PubMedCrossRefGoogle Scholar
  53. 53.
    Truini A, Cruccu G, et al. Painful sensory neuropathy. N Engl J Med 2003; 349: 306–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Lefaucheur JP, Creange A. Neurophysiological testing correlates with clinical examination according to fibre type involvement and severity in sensory neuropathy. J Neurol Neurosurg Psychiatry 2004; 75: 417–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Al-Shekhlee A, Chelimsky TC, Preston DC. Small-fiber neuropathy. Neurologist 2002; 8: 237–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Dutsch M, Marthol H, Stemper B, Brys M, Haendl T, Hilz MJ, Small fiber dysfunction predominates in Fabry neuropathy. J Clin Neurophysiol 2002; 19: 575–86.PubMedCrossRefGoogle Scholar
  57. 57.
    Kelli A, Sullivan and Eva Feldman A. New developments in diabetic neuropathy. Curr Opin 2005; 18: 586–90.Google Scholar
  58. 58.
    Umapathi T, Chaudrhry V. Toxic neuropathy. Curr Opin Neurol 2005; 18: 574: 80.PubMedCrossRefGoogle Scholar
  59. 59.
    Yamamoto M, Kachi T, et al. Sensory conduction study of cisplatin neuropathy: Preservation of small myelinated fibers. Intern Med 1997; 36: 829–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Wolfe GI, Baker NS, et al. Chronic cryptogenic sensory polyneuropathy: clinical and laboratory characteristics. Arch Neurol 1999; 56: 540–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Oxman MN, Levin MJ, Johnson GR, et al. A Vaccine to Prevent Herpes Zoster and Postherpetic Neuralgia in Older Adults. N Engl J Med 2005; 352: 22.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.INSERM 358, CHU de BordeauxUniversité Victor Segalen Bordeaux 2Bordeaux Cedex

Personalised recommendations