Canadian Anaesthetists’ Society Journal

, Volume 27, Issue 5, pp 433–439 | Cite as

Mechanisms of anaesthesia: A review

  • Sheldon H. Roth
Article

Abstract

Anaesthesia is a drug-induced reversible perturbation of neuronal activity. Since a wide variety of structurally unrelated substances are capable of producing this phenomenon, it has been generally accepted that anaesthetics produce their effects through non-specific hydrophobic interactions. Results of recent studies in whole animal and cellular (membrane) preparations demonstrate that a unitary theory of action does not exist. Anaesthetics can produce a spectrum of activity in the central nervous system, and different agents produce different patterns of activity. At the cellular and membrane level, differential effects have been observed, structural dependent differences occur and optical isomers display very different activities. The perturbation (fluidity change) of membrane components does not appear to be uniform for all anaesthetics. It is concluded that anaesthetics are selective agents, and produce their effects at multiple sites and through a variety of mechanisms.

RéSUMé

L’anesthésie est une perturbation réversible d’origine médicamenteuse de I’activité neurologique. Comme une grande variété de substances non apparentées structurellement peuvent produire ce phénomène, il est généralement accepté que les agents anesthésiques produisent leurs effets par des interactions non spécifiques à caractère hydrophobique. Les résultats de travaux récents, tant chez l’animal que ceux effectués sur des montages cellulaires (niveau de la membrane) ont démontré l’absence d’une théorie unique pour expliquer le mécanisme d’action des anesthésiques. Les anesthésiques peuvent exercer leur activité à plusieurs sites du systéme nerveux central et différents agents exercent des effets différents. Au niveau de la membrane et de la cellule, des effets différents ont été observes, on note des différences selon la structure moléculaire et des isomères optiques exercent des actions trés différentes. Les modifications (propriétés fluidiques) des composants de la membrane ne semblent pas uniformes avec tous les agents. On conclut que les agents anesthesiques sont des agents sélectifs qui produisent leurs effets é différents sites et par des mécanismes variés.

References

  1. 1.
    Henderson, V.E. The present status of the theories of narcosis. Physiological Reviews10: 171–220(1930).Google Scholar
  2. 2.
    Millar, R.A. Anaesthetic actions. Br. J. Anaesth.47:335(1975).PubMedCrossRefGoogle Scholar
  3. 3.
    Clark, D.L. &Rosner, B.S. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked response in man. Anesthesiology38: 564–582(1973).PubMedCrossRefGoogle Scholar
  4. 4.
    Stockard, J. &Bickford, R. The neurophysiology of anesthesia.In A Basis and Practice of Neuroanesthesia, Ed. E. Gordon, pp. 3–46. Amsterdam: Excerpta Med. (1975).Google Scholar
  5. 5.
    Roth, S.H. Physical mechanisms of anesthesia. Ann. Rev. Pharmacol. Toxicol.19: 159–178(1979).CrossRefGoogle Scholar
  6. 6.
    Seeman, P. The membrane actions of anesthetics and tranquillizers. Pharmacol. Rev.24: 583–655(1972).PubMedGoogle Scholar
  7. 7.
    Miller, J.C. &Miller, K.W. Approaches to the mechanisms of action of general anesthetics.In Physiological and Pharmacological Biochemistry, Biochemistry Series One, Vol. 12, Ed. H.F.K. Blaschko. pp. 33–76. London: Butterworth (1975).Google Scholar
  8. 8.
    Kaufman, R.D. Biophysical mechanisms of anesthetic action: historical perspective and review of current concepts. Anesthesiology46: 49–62(1977).PubMedCrossRefGoogle Scholar
  9. 9.
    Halsey, M.J., Millar, R.A. &Sutton, J.A. eds. Molecular mechanisms in general anesthesia. Edinburgh: Churchill-Livingstone (1974).Google Scholar
  10. 10.
    Fink, B.R. ed. Molecular mechanisms of anesthesia, progress in anesthesiology, Vol. I. New York: Raven Press (1975).Google Scholar
  11. 11.
    Richards, CD. In search of the mechanisms of anaesthesia. Trends in Neuroscience3: 9–13(1980).CrossRefGoogle Scholar
  12. 12.
    Roth, S.H. Membrane and cellular actions of anesthetic agents. Federation Proc.39: 1595–1599(1980).Google Scholar
  13. 13.
    Rosner, B.S. &Clark, D.L. Neurophysiologic effects of general anesthetics. II. Sequential regional actions in the brain. Anesthesiology39: 59–81(1973).CrossRefGoogle Scholar
  14. 14.
    Mori, K., Kawamata, M., Miyajima, S. &Fujita, M. The effects of several anesthetic agents on the neuronal reactive properties of thalamic relay nuclei in the cat. Anesthesiology36: 550–557(1972).PubMedCrossRefGoogle Scholar
  15. 15.
    Dafny, N. &Rigor, B.M. Dose effects of ketamine on photic and acoustic field potentials. Neuropharmacol.17: 851–862(1978).CrossRefGoogle Scholar
  16. 16.
    Shimoji, K., Matsuki, M., Shimizu, H., Maruyama, Y. &Adia, S. Dishabituation of mesencephalic reticular neurons by anesthetics. Anesthesiology47: 349–352 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    Nicholl, R.A. The effects of anesthetics on synaptic excitation and inhibition in the olfactory bulb. J. Physiol.233: 803–814 (1972).Google Scholar
  18. 18.
    Winters, W.D. Neuropharmacological studies of drug-induced states of CNS excitation and depression.In Drugs and the Brain, Ed. P. Black, pp. 93–114. Baltimore: Johns Hopkins Univ. Press (1969).Google Scholar
  19. 19.
    Winters, W.D., Ferrar-Allado, T., Guzman-Flores, C. &Alcaraz, M. The cataleptic state induced by ketamine: a review of the neuropharmacology of anesthesia. Neuropharmacology11: 303–315(1972).PubMedCrossRefGoogle Scholar
  20. 20.
    Paton, W.D.M. Unconventional anesthetic molecules. In Reference 9, pp. 48–64.Google Scholar
  21. 21.
    Wall, P.D. The mechanisms of general anesthesia. Anesthesiology28: 46–52(1967).PubMedGoogle Scholar
  22. 22.
    Richards, CD. The action of anaesthetics on synaptic transmission. Gen. Pharmacol.9: 287–293(1978).PubMedGoogle Scholar
  23. 23.
    Larrabee, M.G. &Posternak, J.M. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J. Neurophysiol.15: 91–114(1952).PubMedGoogle Scholar
  24. 24.
    Staiman, A. &Seeman, P. Nerve fibre diameter determines the nerve-blocking concentrations of anesthetics, alcohols, anticonvulsants, barbiturates and narcotics. Can. J. Physiol. Pharmacol.52: 535–550(1974).PubMedGoogle Scholar
  25. 25.
    Staiman, A. &Seeman, P. Conduction-blocking concentrations of anesthetics increase with nerve axon diameter: studies with alcohol, lidocaine and tetrodotoxin on single myelinated fibers. J. Pharmacol. Exp. Ther.201: 340–349(1977).PubMedGoogle Scholar
  26. 26.
    Carpenter, F.G. Anesthetic action of inert and unreactive gases on intact animals and isolated tissues. Amer. J. Physiol.178: 505–509(1954).PubMedGoogle Scholar
  27. 27.
    Roth, S.H., Smith, R.A. &Paton, W.D.M. Pressure antagonism of anaesthetic-induced conduction failure in frog peripheral nerve. Br. J. Anaesth.48: 621–628(1976).PubMedCrossRefGoogle Scholar
  28. 28.
    Smaje, J.C. General anaesthetics and the acetylcholine-sensitivity of cortical neurones. Br. J. Pharmacol.58: 359–366(1976).PubMedGoogle Scholar
  29. 29.
    Evans, R.H. Potentiation of the effects of GABA by pentobarbitone. Brain Research171: 113–120(1979).PubMedCrossRefGoogle Scholar
  30. 30.
    Morris, M.E. Facilitation of synaptic transmission by general anesthetics. J. Physiol.284: 307–325(1978).PubMedGoogle Scholar
  31. 31.
    Weakly, J.N. Effect of barbiturates on “quantal” synaptic transmission in spinal motoneurones. J. Physiol.204: 63–77(1969).PubMedGoogle Scholar
  32. 32.
    Zorychta, E. &Capek, R. Depression of spinal monosynaptic transmission by diethyl ether: quantal analysis of unitary synaptic potentials. J. Pharmacol. Exp. Ther.207: 825–836(1978).PubMedGoogle Scholar
  33. 33.
    Torda, T.A. &Gage, P.W. Postsynaptic effect of I.V. anaesthetic agents at the neuromuscular junction. Br. J. Anaesth.49: 771–776(1977).PubMedCrossRefGoogle Scholar
  34. 34.
    Somjen.G.G. Effects of anesthetics on spinal cord of mammals. Anesthesiology28: 135–143(1967).CrossRefGoogle Scholar
  35. 35.
    Chalazonitis, N. Selective actions of volatile anesthetics on synaptic transmission and autorhythmicity in single identifiable neurons. Anesthesiology28: 111–122(1967).PubMedCrossRefGoogle Scholar
  36. 36.
    Sato, M., Austin, G.M. &Yai, H. Increase in permeability of the post-synaptic membrane to potassium produced by “Nembutal”. Nature215: 1506–1508(1967).PubMedCrossRefGoogle Scholar
  37. 37.
    Singer, S.J. &Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science175: 720–731(1972).PubMedCrossRefGoogle Scholar
  38. 38.
    Singer, S.J. The proteins of membranes. J. Colloid and Interface Science58: 452–458(1977).CrossRefGoogle Scholar
  39. 39.
    Fahey, P.F., Koppel, D.E., Barak, L.S., Wolf, D.E., Elson, E.L. &Webb, W.W. Lateral diffusion in planar lipid bilayers. Science195: 305–306(1977).PubMedCrossRefGoogle Scholar
  40. 40.
    Gennis, R.B. &Jones, A. Protein-lipid interactions. Ann. Rev. Biophys. Bioeng.6: 195–238(1977).CrossRefGoogle Scholar
  41. 41.
    Halsey, M.J., Wardley-Smith, B. &Green, C.J. Pressure reversal of general anaesthesia - a multi-site expansion hypothesis. Br. J. Anaesth.50: 1091–1097(1978).PubMedCrossRefGoogle Scholar
  42. 42.
    Meyer, K.H. Contributions to the theory of narcosis. Trans. Faraday Soc.33: 1062–1068(1937).CrossRefGoogle Scholar
  43. 43.
    Mullins, L.J. Some physical mechanisms in narcosis. Chem. Rev.54: 289–323(1954).CrossRefGoogle Scholar
  44. 44.
    Miller, K.W., Paton, W.D.M., Smith, R.A. &Smith, E.B. The pressure reversal of anaesthesia and the critical volume hypothesis. Mol. Pharmacol.9: 131–143(1973).PubMedGoogle Scholar
  45. 45.
    Roth, S.H. Anesthesia and pressure: antagonism and enhancement.In Molecular Mechanisms of Anesthesia. Progress in Anesthesiology, Vol. I, pp. 405–420. New York: Raven(1975).Google Scholar
  46. 46.
    Roth, S.H. &Seeman, P. Anesthetics expand erythrocyte membranes without causing loss of potassium. Biochim. Biophys. Acta255: 190–198(1972).PubMedCrossRefGoogle Scholar
  47. 47.
    Lever, M.K., Miller, K.W., Paton, W.D.M. &Smith, E.B. Pressure reversal of anaesthesia. Nature (London)231: 368–371(1071).CrossRefGoogle Scholar
  48. 48.
    Roth, S.H. &Seeman, P. Anesthetics expand erythrocyte membranes without causing loss of potassium. Biochim. Biophys. Acta255: 190–198(1972).PubMedCrossRefGoogle Scholar
  49. 49.
    Trudell, J.R. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology46: 5–10(1977).PubMedCrossRefGoogle Scholar
  50. 50.
    Lee, A.G. Model for action of local anaesthetics. Nature (London)262: 545–548(1976).CrossRefGoogle Scholar
  51. 51.
    Pringle, M.J. &Miller, K.W. Differential effects on phospholipid phase transitions produced by structurally related long-chain alcohols. Biochemistry18: 3314–3320(1979).PubMedCrossRefGoogle Scholar
  52. 52.
    Rosenberg, P.H., Jansson, S-E. &Gripenberg, J. Effects of halothane, thiopental and lidocaine on fluidity of s ynaptic plasma membranes and art ificial phospholipid membranes. Anesthesiology46: 322–326(1977).PubMedCrossRefGoogle Scholar
  53. 53.
    Miller, K.W. &Pang, K-Y.Y. General anesthetics can selectively perturb lipid bilayer membranes. Nature263: 253–255(1976).PubMedCrossRefGoogle Scholar
  54. 54.
    Simon, S.A., McIntosh, T.J., Bennett, P.B. &Shrivastav, B.B. Interaction of halothane with lipid bilayers. Mol. Pharmacol.16: 163–170(1979).PubMedGoogle Scholar
  55. 55.
    Pringle, M.J. &Miller, K.W. Structural isomers of tetradecenol discriminate between the lipid fluidity and phase transition theories of anesthesia. Biochem. Biophys. Res. Comm.85: 1192–1198(1978).PubMedCrossRefGoogle Scholar
  56. 56.
    Richards, CD., Martin, K., Gregory, S., Keightley, C.A., Hesketh, T.R., Smith, G.A., Warren, G.B. &Metcalfe, J.C. Degenerate perturbations of protein structure as the mechanism of anesthetic action. Nature (London)276: 775–779(1978).CrossRefGoogle Scholar
  57. 57.
    Sinclair, J.G. &Tien, A.F. Neuronal responses to ketamine administered microiontophoretically or intraperitoneally in the rat. Gen. Pharmac.10: 51–55(1979).Google Scholar
  58. 58.
    Richter, J., Landau, E.M. andCohen, S. Anaesthetic and convulsant ethers act on different sites at the crab neuromuscular junctionin vitro. Nature266: 70–71(1977).PubMedCrossRefGoogle Scholar
  59. 59.
    Jain, M.K., Gleeson, J., Upreti, A. &Upreti, G.C Intrinsic perturbing ability of alkanols in lipid bilayers, Biochim. Biophys. Acta.509: 1–8(1978).CrossRefGoogle Scholar
  60. 60.
    Andrews, P.R., Jones, G.P. &Lodge, D. Convulsant, anticonvulsant and anesthetic barbiturates. 5-ethyl-5-(-3′-methyl-but-2′-enyl)-barbituric acid and related compounds. Europ. J. Pharmacol.55: 115–120(1979).CrossRefGoogle Scholar
  61. 61.
    Hertz, L. &Sastry, B.R. Inhibition ofx- aminobutyric acid uptake into astrocytes by pentobarbital. Can. J. Physiol. Pharmacol.56: 1083–1087(1978).PubMedGoogle Scholar
  62. 62.
    HuanG, L-Y.M. &Barker, J.L. Pentobarbital stereospecific actions of (+) and (-) isomers revealed on cultured mammalian neurons. Science207: 195–197(1980).PubMedCrossRefGoogle Scholar
  63. 63.
    Phillips, G.H. Structure activity relationships in steroidal anesthetics. In reference 9, pp. 32-46.Google Scholar
  64. 64.
    Cohen, S., Goldschmid, A., Shtacher, G., Srebrenik, S. &Gitter, S. The inhalation convulsants: a pharmacodynamic approach. Mol. Pharmacol.11: 379–385 (1975).PubMedGoogle Scholar
  65. 65.
    White, P.F., Ham, J., Way, W.L. andTrevor, A.J. Pharmacology of ketamine isomers in surgical patients. Anesthesiology52: 213–239 (1980).CrossRefGoogle Scholar
  66. 66.
    Gage, P.W. &Hamill, O.P. Effects of several inhalation anesthetics on the kinetics of postsynaptic conductance changes in mouse diaphragm. Br. J. Pharmac.57: 263–272(1976).Google Scholar
  67. 67.
    Kleinhaus, A.L. andPritchard, J.W. Interaction of divalent cations and barbiturates on four identified leech neurons. Comp. Biochem. Physiol.63c: 351–357(1979).Google Scholar
  68. 68.
    MacDonald, R.L. &Barker, J.L. Different actions of anticonvulsant and anesthetic barbiturates revealed by use of cultured mammalian neurons. Science200: 775–777(1978).PubMedCrossRefGoogle Scholar
  69. 69.
    Roth, S.H. &MacIver, B. Alteration of neuronal behaviour by anesthetic agents. Proc. West. Pharmacol. Soc.22: 47–52(1979).PubMedGoogle Scholar
  70. 70.
    Roth, S.H. The differential effects of anesthetics on neuronal activity. Molecular Mechanisms of Anesthesia. Progress in Anesthesiology, Vol. 2. New York, Raven Press (1908), in press.Google Scholar
  71. 71.
    MacIver, M.B. &Roth, S.H. The effects of halothane on the neuronal output, membrane properties and synaptic transmission of an isolated neuron. Proc. West. Pharmacol. Soc.23: 405–411 (1980).PubMedGoogle Scholar
  72. 72.
    Lawrence, D.K. &Gill, E.W. Structurally specific effects of some steroid anesthetics on spin-labeled lipsomes. Mol. Pharmacol.11: 280–286(1975).PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1980

Authors and Affiliations

  • Sheldon H. Roth
    • 1
  1. 1.Division of Pharmacology and Therapeutics, Faculty of MedicineThe University of CalgaryCalgaryCanada

Personalised recommendations