Canadian Journal of Anaesthesia

, Volume 37, Issue 2, pp 238–244 | Cite as

Narcotic reversal in hypercapnic dogs: comparison of naloxone and nalbuphine

  • Christopher A. Mills
  • Joan W. Flacke
  • Werner E. Flacke
  • Byron C. Bloor
  • Marvin D. Liu
Laboratory Investigations


Reversal of opioid effects by naloxone (NX) can lead to significant cardiovascular problems. We have reported previously that hypercapnic dogs develop greater increases in blood pressure and plasma catecholamine (CA) levels than hypocapnic ones when reversed with naloxone. We have also demonstrated differences between NX and nalbuphine (NBPH) in producing excitatory adrenergic responses when administered during normocapnia. The present study was designed to investigate possible dissimilarities in cardiovascular and sympathetic events after administration of either NX or NBPH in dogs made hypercapnic following fentanyl administration. After induction of anaesthesia with thiopentone and intubation, two groups of dogs were maintained with controlled ventilation on enflurane in oxygen anaesthesia and given 50 μg · kg-1 fentanyl IV. This caused a significant decrease in heart rate (HR) (P < 0.001), mean arterial blood pressure (MAP) (P < 0.001), and plasma concentrations of norepinephrine (NE) (P < 0.002). Then, ventilation was decreased to produce a PaCO2 of 60 mmHg; this was accompanied by a significant elevation in plasma level of both epinephrine (EP1) (P < 0.02) and NE (P < 0.001). Administration of 20 μg · kg-1 NX to six dogs resulted in immediate increases in HR (P < 0.01) and MAP (P < 0.01), and a further rise in CA levels to greater than prefentanyl baseline values. In six other dogs, NBPH (0.3 mg · kg-1) caused increases in HR (P < 0.001) and MAP (P < 0.001) only, and the MAP rise was significantly less than that seen in the NX group (P < 0.01). Neither NE nor EPI levels increased after NBPH. Absolute levels of EPI one minute after reversal with NBPH were not greater than baseline and were significantly less than after NX (P < 0.05). Addition of NX after NBPH caused a further significant increase in EPI to levels greater than baseline (P < 0.002). This study suggests that the abrupt, significant, and sustained increases in MAP and plasma levels of CA which accompany narcotic reversal with NX during hypercapnia are blunted if nalbuphine rather than naloxone is used.

Key words

analgesics: fentanyl antagonists, narcotic: nalbuphine, naloxone carbon dioxide: hypercarbia 


L’antagonisme des effets des opiacés par le naloxone (NX) peut amener des problèmes cardiovasculaires significatifs. On a rapporté dans le passé que des chiens hypercapniques développaient une plus grande augmentation de la pression artérielle et des catécholamines plasmatiques (CA) que ceux qui sont hypocapniques lors de l’antagonisme avec le naloxone. On a aussi démontré des différences entre le naloxone et la nalbuphine (NBPH) dans la production de réponses adrénergiques lorsqu’administrés en normocapnie. Cette étude a été conçue afin d’investiguer les différences possibles dans les réponses sympathiques et cardiovasculaires après administration de soit NX ou NBPH chez des chiens rendus hypercapniques après administration de fentanyl. Après l’induction de l’anesthésie avec du thiopentone et intubation, deux groupes de chiens ont été maintenus avec une ventilation contrôlée sous enflurane et oxygène et ont reçu 50 μg · kg-1 de fentanl par voie intraveineuse. Ceci amena une diminution significative de la fréquence cardiaque (HR) (P < 0,001), pression artérielle moyenne (MAP) (P < 0,001), et des concentrations plasmatiques de norépinéphrine (NE) (P < 0,002). Par la suite, la ventilation fut diminuée afin de produire une PaCO2 de 60 mmHg; ceci fut accompagné par une augmentation significative des niveaux plasmatiques d’épinéphrine (EPI) (P < 0,02) et de norépi-néphrine (P < 0,001).L’administration de20μg · kg-1 de NX à six chiens a occasionne une augmentation immédiate de la fréquence cardiaque HR(P < 0,01) et de la MAP (P < 0,01), et une augmentation de la CA à un niveau supérieur aux valeurs de contrôle avant-fentanyl. Chez les six autres chiens, du NBPH (0,3 mg · kg-1)a occasionné une augmentation de HR et de la MAP (P < 0,001) uniquement, et l’augmentation de la MAP était significativement moindre que celle observée dans le groupe NX (P < 0,01). Ni les niveaux de NE ou EPI augmentèrent après le NBPH. Les niveaux absolus de EPI une minute après antagonisme avec le NBPH ne furent pas supé-rieurs à ceux de la valeur de contrôle et étaient significativement moindres qu’aprés NX (P < 0,005). L’addition de NX après NBPH a occasionné une augmentation significative des niveaux de EPI supérieurs à celui du contrôle (P < 0,002). Cette étude suggère qu’une augmentation brusque, significative, et soutenue de la MAP et des niveaux plasmatiques de CA qui accompagnent l’antagonisme des narcotiques avec le NX durant l’hypercapnie sont amoindris si le nalbuphine plutôt que le naloxone est utilisé.


  1. 1.
    Flacke JW. Antagonism of opioid analgesics with nalbuphinc and naloxone. Seminars in Anesthesia. Katz RL (Ed.). Orlando: Grune and Stratton Inc. 1988; 7: 178–91.Google Scholar
  2. 2.
    Fahmy NR. Agonist/antagonist opioid analgesics: nalbuphine hydrochloride.In: Opioids in Anesthesia. Estafanous FG (Ed.). Boston: Butterworth Publishers. 1984, 20–7.Google Scholar
  3. 3.
    Jaffe JH, Martin WR. Opioid analgesics and antagonists.In: The Pharmacological Basis of Therapeutics. Gilman AG, Goodman LS, Rail TY, Murad F (Eds.). New York: Macmillan Publishing Co. 1985, 491–527.Google Scholar
  4. 4.
    Hug CC. New narcotic analgesics and antagonists in anesthesia. Seminars in Anesthesia.Katz RL (Ed.). Orlando: Grune and Stratton, Inc. 1982; 1: 14–209.Google Scholar
  5. 5.
    Freye E, Azevedo L, Hartung E. Reversal of fentanyl related respiratory depression with nalbuphine. Effects on the CO2-response curve in man. Acta Anaesthesiol Belg 1985; 4: 365–74.Google Scholar
  6. 6.
    Latasch L, Probst S, Dudziak R. Reversal by nalbuphine of respiratory depression caused by fentanyl. Anesth Analg 1984; 63: 814–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Magruder MR, Delaney RD, DiFazio CA. Reversal of narcotic-induced respiratory depression with nalbuphine hydrochloride. Ancsthesiol Reviews 1982; 9: 34–7.Google Scholar
  8. 8.
    Schaer H, Baasch K, Achtari R. Nalbuphin nach cnfluran oder fentanyl — wirkungen auf kreislauf und atmung. Anaesthesist 1986; 35: 478–84.PubMedGoogle Scholar
  9. 9.
    Zsigmond EK, Durrani Z, Barabas E, Wang XY, Tran L. Endocrine and hemodynamic effects of antagonism of fentanyl-induced respiratory depression by nalbuphine. Anesth Analg 1987; 66: 421–16.PubMedGoogle Scholar
  10. 10.
    Andree RA. Sudden death following naloxone administration. Anesth Analg 1980; 59: 782–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Azar I, Turndorf H. Severe hypertension and multiple atrial premature contractions following naloxone administration. Anesth Analg 1979; 58: 524–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Estilo AE, Cornell JE. Naloxone, hypertension, and ruptured cerebral aneurysm. Anesdiesiology 1981; 54: 352.Google Scholar
  13. 13.
    Flacke JW, Flacke WE, Williams GD. Acute pulmonary edema following naloxone reversal of high-dose morphine anesthesia. Anesthesiology 1977; 47: 376–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Flacke JW, Flacke WE, Bloor BC, Olewine S. Effects of fentanyl, naloxone, and clonidine on hemodynamics and plasma catecholamine levels in dogs. Anesth Analg 1983; 62: 305–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Levin ER, Sharp B, Drayer JIM, Weber MA. Case report: severe hypertension induced by naloxone. Am J Med Sci 1985; 290: 70–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Michaelis LL, Hickey PR. Ventricular irritability associated with the use of naloxone hydrochloride. Ann Thorac Surg 1974; 18:608–14.PubMedGoogle Scholar
  17. 17.
    Partridge BL, Ward CR. Pulmonary edema following low-dose naloxone administration. Anesthesiology 1986; 65: 709–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Prough DS, Roy R, Bumgarner J, Shannon G. Acute pulmonary edema in healthy teenagers following conservative doses of intravenous naloxone. Anesthesiology 1984; 60: 485–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Taff RH. Pulmonary edema following naloxone administration in a patient without heart disease. Anesthesiology 1983; 59: 576–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Tanaka GY. Hypertensive reaction to naloxone. JAMA 1974; 228: 25–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Blaise GA, McMichan JC, Nugent M, Hollier LH. Nalbuphine produces side-effects while reversing narcotic-induced respiratory depression. Anesth Analg 1986; 65: S19.Google Scholar
  22. 22.
    DesMarteau JK, Cassot AI. Acute pulmonary edema resulting from nalbuphine reversal of fentanyl-induced respiratory depression. Anesthesiology 1986; 65: 237.PubMedCrossRefGoogle Scholar
  23. 23.
    Moldenhauer CC, Roach GW, Finlayson DC et al. Nalbuphine antagonism of ventilatory depression following high-dose fentanyl anesthesia. Anesthesiology 1985; 62: 647–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Ramsay JG, Higgs BD, Wynands JE, Robbins R, Townsend GE. Early extubation after high-dose fentanyl anaesthesia for aortocoronary bypass surgery: reversal of respiratory depression with low-dose nalbuphine. Can Anaesth Soc J 1985; 32: 597–606.PubMedCrossRefGoogle Scholar
  25. 25.
    Tabatabai M, Javadi P, Tadjziechy M, Mazloomdoost M. Effect of nalbuphine hydrochloride on fentanyl-induced respiratory depression and analgesia. Anesthesiology 1984; 61: A475.CrossRefGoogle Scholar
  26. 26.
    Mills CA, Flacke JW, Miller JD, Davis LJ, Bloor BC, Flacke WE. Cardiovascular effects of fentanyl reversal by naloxone at varying arterial carbon dioxide tensions in dogs. Anesth Analg 1988; 67: 730–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Watson E. Liquid chromatography with electrochemical detection for plasma norcpincphrine and epinephrine. Life Sci 1981; 28: 493–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Freye E. Effects of high dosages of fentanyl, mepcridinc, and naloxone in dogs. Anesth Analg 1974; 53: 40–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Flacke JW, Davis U, Flacke WE, Bloor BC, Van Etten AP. Effects of fentanyl and diazepam in dogs deprived of autonomic tone. Anesth Analg 1985; 64: 1053–9.PubMedGoogle Scholar
  30. 30.
    Morris ME, Millar RA. Blood pH/plasma catecholamine relationships: respiratory acidosis. Br J Anaesth 1962; 34:672–81.CrossRefGoogle Scholar
  31. 31.
    Gal TJ, DiFazio CA, Moscicki J. Analgesic and respiratory depressant activity of nalbuphine: a comparison with morphine. Anesthesiology 1982; 57: 367–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Romagnoli A, Keats AS. Ceiling effect for respiratory depression by nalbuphine. Clin Pharmacol Ther 1980; 27: 478–85.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1990

Authors and Affiliations

  • Christopher A. Mills
    • 1
  • Joan W. Flacke
    • 1
  • Werner E. Flacke
    • 1
  • Byron C. Bloor
    • 1
  • Marvin D. Liu
    • 1
  1. 1.Department of AnesthesiologyUniversity of Califronia, Los Angeles, Center for the Health SciencesLos Angeles

Personalised recommendations