Bio Tribune Magazine

, Volume 28, Issue 1, pp 34–37

Apport des biomarqueurs au diagnostic de la maladie de Parkinson

  • T. Lebouvier
  • T. Chaumette
  • P. Damier
  • M. Neunlist
  • P. Derkinderen
Dossier Revue
  • 50 Downloads

Résumé

La forte prévalence des maladies neurodégénératives chez les personnes âgées en fait un enjeu de santé publique dans nos sociétés. L’amélioration de leur prise en charge viendra d’abord des progrès réalisés dans le diagnostic, notamment aux stades initiaux. La contribution importante des biomarqueurs au diagnostic de la maladie d’Alzheimer laisse espérer un développement similaire dans la maladie de Parkinson. Des travaux récents montrent l’intérêt de marqueurs des agrégats d’α-synucléine ou du stress oxydatif dans le sang et le liquide cérébrospinal.

Mots clés

Maladie de Parkinson Biomarqueurs Stress oxydatif Alpha-synucléine Liquide cérébrospinal 

Biomarkers and Parkinson’ disease: recent developments

Abstract

Neurodegenerative diseases have a high prevalence in the elderly. Progress in medical care depends on the accuracy and precocity of the diagnosis. Biomarkers have proved to be a valuable tool for the diagnosis of Alzheimer’s disease and a similar development is expected for Parkinson’s disease. Recent data suggest that markers of α-synuclein aggregation and oxidative stress in blood and cerebrospinal fluid could contribute to the diagnosis of Parkinson’s disease.

Keywords

Parkinson’s disease Biomarker Oxidative stress Alpha-synuclein Cerebrospinal fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

/+/ Références

  1. (1).
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3): 89–95CrossRefGoogle Scholar
  2. (2).
    Van Everbroeck B, Boons J, Cras P (2005) Cerebrospinal fluid biomarkers in Creutzfeldt-Jakob disease. Clin Neurol Neurosurg 107(5): 355–60.PubMedCrossRefGoogle Scholar
  3. (3).
    Dubois B, Feldman HH, Jacova C, et al. (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8): 734–46PubMedCrossRefGoogle Scholar
  4. (4).
    Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10): 605–13PubMedCrossRefGoogle Scholar
  5. (5).
    icieli G, Tosi P, Marcheselli S, Cavallini A (2003) Autonomic dysfunction in Parkinson’s disease. Neurol Sci 24 Suppl 1: S32–4Google Scholar
  6. (6).
    Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14): 1356–64PubMedCrossRefGoogle Scholar
  7. (7).
    de Rijk MC, Launer LJ, Berger K, et al. (2000) Prevalence of Parkinson’s disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54(11 Suppl 5): S21–3PubMedGoogle Scholar
  8. (8).
    Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4): 368–76PubMedCrossRefGoogle Scholar
  9. (9).
    Dauer WT, Przedborski S (2003) Parkinson’s Disease: mechanisms and models. Neuron 39: 889–909PubMedCrossRefGoogle Scholar
  10. (10).
    Spillantini MG, Schmidt ML, Lee VM, et al. (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645): 839–40PubMedCrossRefGoogle Scholar
  11. (11).
    Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7(4): 306–18PubMedCrossRefGoogle Scholar
  12. (12).
    Fujiwara H, Hasegawa M, Dohmae N, et al. (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2): 160–4PubMedGoogle Scholar
  13. (13).
    Anderson JP, Walker DE, Goldstein JM, et al. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40): 29739–52PubMedCrossRefGoogle Scholar
  14. (14).
    Del Tredici K, Rüb U, De Vos RA, et al. (2002) Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61(5): 413–26PubMedGoogle Scholar
  15. (15).
    Hilker R, Schweitzer K, Coburger S, et al. (2005) Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 62(3): 378–82PubMedCrossRefGoogle Scholar
  16. (16).
    Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3): 235–45PubMedCrossRefGoogle Scholar
  17. (17).
    Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5(1): 75–86PubMedCrossRefGoogle Scholar
  18. (18).
    Poewe, W, Wenning G (2002) The differential diagnosis of Parkinson’s disease. Eur J Neurol 9 Suppl 3: 23–30PubMedCrossRefGoogle Scholar
  19. (19).
    Przedborski S, Jackson-Lewis V, Vila M, et al. (2003) Free radical and nitric oxide toxicity in Parkinson’s disease. Adv Neurol 91: 83–94PubMedGoogle Scholar
  20. (20).
    Giasson BI, Duda JE, Murray IV, et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493): 985–9PubMedCrossRefGoogle Scholar
  21. (21).
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113): 787–95PubMedCrossRefGoogle Scholar
  22. (22).
    Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587): 979–80PubMedCrossRefGoogle Scholar
  23. (23).
    Gash DM, Rutland K, Hudson NL, et al. (2008) Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol 63(2): 184–92PubMedCrossRefGoogle Scholar
  24. (24).
    El-Agnaf OM, Salem SA, Paleologou KE, et al. (2003) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17(13): 1945–7PubMedGoogle Scholar
  25. (25).
    Li QX, Campbell BC, McLean CA, et al. (2002) Platelet alpha- and gamma-synucleins in Parkinson’s disease and normal control subjects. J Alzheimers Dis 4(4): 309–15PubMedGoogle Scholar
  26. (26).
    El-Agnaf OM, Salem SA, Paleologou KE, et al. (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20(3): 419–25PubMedCrossRefGoogle Scholar
  27. (27).
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl: S10–7PubMedCrossRefGoogle Scholar
  28. (28).
    Schapira AH, Cooper JM, Dexter D, et al. (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3): 823–7PubMedCrossRefGoogle Scholar
  29. (29).
    Krige D, Carroll MT, Cooper JM, et al. (1992) Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32(6): 782–8PubMedCrossRefGoogle Scholar
  30. (30).
    Blandini F, Nappi G, Greenamyre JT (1998) Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov Disord 13(1): 11–5PubMedCrossRefGoogle Scholar
  31. (31).
    Hanagasi HA, Ayribas D, Baysal K, et al. (2005) Mitochondrial complex, I II/III, and IV activities in familial and sporadic Parkinson’s disease. Int J Neurosci 115(4): 479–93PubMedCrossRefGoogle Scholar
  32. (32).
    Jenner P (1993) Presymptomatic detection of Parkinson’s disease. J Neural Transm Suppl 40: 23–36PubMedGoogle Scholar
  33. (33).
    Scherzer CR, Eklund AC, Morse LJ, et al. (2007) Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci USA 104(3): 955–60PubMedCrossRefGoogle Scholar
  34. (34).
    Bogdanov M, Matson WR, Wang L, et al. (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131(Pt 2): 389–96PubMedCrossRefGoogle Scholar
  35. (35).
    Shin Y, Klucken J, Patterson C, et al. (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280(25): 23727–34PubMedCrossRefGoogle Scholar
  36. (36).
    Goodacre R (2005) Metabolomics shows the way to new discoveries. Genome Biol 6(11): 354PubMedCrossRefGoogle Scholar
  37. (37).
    Kikuchi A, Takeda A, Onodera H, et al. (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9(2): 244–8PubMedCrossRefGoogle Scholar
  38. (38).
    Sato S, Mizuno Y, Hattori N (2005) Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 64(6): 1081–3PubMedGoogle Scholar
  39. (39).
    Younes-Mhenni S, Frih-Ayed M, Kerkeni A, et al. (2007) Peripheral blood markers of oxidative stress in Parkinson’s disease. Eur Neurol 58(2): 78–83PubMedGoogle Scholar
  40. (40).
    de Lau LM, Koudstaal PJ, Hofman A, Breteler MM. (2005) Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 58(5): 797–800PubMedCrossRefGoogle Scholar
  41. (41).
    Buhmann C, Arlt S, Kontush A, Möller-Bertram T, et al. (2004) Plasma and CSF markers of oxidative stress are increased in Parkinson’s disease and influenced by antiparkinsonian medication. Neurobiol Dis 15(1): 160–70PubMedCrossRefGoogle Scholar
  42. (42).
    Forte G, Bocca B, Senofonte O, et al. (2004) Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm 111(8): 1031–40PubMedCrossRefGoogle Scholar
  43. (43).
    Schwarzschild MA, Schwid SR, Marek K, et al. (2008) Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol [Epub ahead of print]Google Scholar
  44. (44).
    Waragai M, Nakai M, Wei J, et al. (2007) Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett 425(1): 18–22PubMedCrossRefGoogle Scholar
  45. (45).
    Borghi R, Marchese R, Negro A, et al. (2000) Full length alphasynuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett 287(1): 65–7PubMedCrossRefGoogle Scholar
  46. (46).
    Bibl M, Mollenhauer B, Esselmann H, et al. (2006) CSF amyloid-beta-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain 129(Pt 5): 1177–87PubMedCrossRefGoogle Scholar
  47. (47).
    Abdo WF, Bloem BR, Van Geel WJ, et al. (2007) CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol Aging 28(5): 742–7PubMedCrossRefGoogle Scholar
  48. (48).
    Abdo WF, De Jong D, Hendricks JC, et al. (2004) Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Mov Disord 19(5): 571–9PubMedCrossRefGoogle Scholar
  49. (49).
    Abe T, Isobe C, Murata T, et al. (2003) Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett 336(2): 105–8PubMedCrossRefGoogle Scholar
  50. (50).
    Isobe C, Murata T, Sato C, Terayama Y (2007) Increase of oxidized/total coenzyme Q-10 ratio in cerebrospinal fluid in patients with Parkinson’s disease. J Clin Neurosci 14(4): 340–3PubMedCrossRefGoogle Scholar
  51. (51).
    Waragai M, Wei J, Fujita M, et al. (2006) Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 345(3): 967–72PubMedCrossRefGoogle Scholar
  52. (52).
    Abdi F, Quinn JF, Jankovic J, et al. (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9(3): 293–34PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. Lebouvier
    • 1
    • 2
  • T. Chaumette
    • 2
  • P. Damier
    • 1
  • M. Neunlist
    • 2
  • P. Derkinderen
    • 1
    • 2
  1. 1.Clinique neurologiquehôpital Laënnec, CHU de NantesNantesFrance
  2. 2.Inserm 913, neuropathies du système nerveux entérique et pathologies digestivesHôtel-Dieu, CHU de NantesNantesFrance

Personalised recommendations