Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind

  • J. Nitsche
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    S. Agmon, Lectures on Elliptic Boundary Value Problems. D. Van Nostrand Comp., Inc. Princeton, New Jersey, New York 1965.MATHGoogle Scholar
  2. [2]
    J. P. Aubin, Approximation des espaces de distributions et des opérateurs diffeérentiels. Bull. Soc. math. France. Mémoire12 1967 139p.Google Scholar
  3. [3]
    I. Babuska, Numerical Solution of Boundary Value Problems by the Perturbated Variational Principle. Techn. Note BN-624, University of Maryland, 1969.Google Scholar
  4. [4]
    I. Babuska, Error-Bounds for Finite Element Method. Techn. Note BN-630. Univ. of Maryland, 1969.Google Scholar
  5. [5]
    I. Babuska, Approximation by Hill Functions. To appear.Google Scholar
  6. [6]
    J. H. Bramble andA. H. Schatz, Rayleigh-Ritz-Galerkin Methods for Dirichlet’s Problem Using Subspaces Without Boundary conditions. To appear Comm. p. appl. Math.23 (1970) 653–675.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    T. Miyoshi, On the Convergence of Rith-Galerkin’s Method. Publ. Res. Inst. Math. Sci. Ser. A4 (1968/69), 149–177.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Nitsche, Ein Kriteriums für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math.11 (1968) 346–384.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. for Rat. Mech. and Anal.36 (1970) 348–355.MathSciNetMATHGoogle Scholar
  10. [10]
    B. L. Rvachev andL. I. Shklyarov On the Application of the Bubnov-Galerkin Method to the Solution of Boundary Problems for Domains of Complex Shape. Diff. Equ.1 (1965) 1211–1216.Google Scholar
  11. [11]
    M. Schechter, OnL p Estimates and Regularitys. Math. Scand.13 (1963) 47–69.MathSciNetMATHGoogle Scholar
  12. [12]
    M. H. Schultz, Rayleigh-Ritz-Galerkin Methods for Multidimensional Problems. SIAM J. Numer. Anal.6 (1969) 523–538.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    M. Zlamal, On the Finite Element Method Numer. Math.12 (1968) 394–409.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Mathematische Seminar 1971

Authors and Affiliations

  • J. Nitsche
    • 1
  1. 1.Freiburg i. Br.

Personalised recommendations