Archives of Pharmacal Research

, Volume 26, Issue 12, pp 1067–1073 | Cite as

Ursodeoxycholic acid inhibits pro-inflammatory repertoires, IL-1β and nitric oxide in rat microglia

  • Seong-Soo Joo
  • Hee-Chul Kang
  • Tae-Joon Won
  • Do-Ik Lee


Ursodeoxycholic acid (UDCA) is a non-toxic, hydrophilic bile acid in widespread clinical use mainly for acute and chronic liver disease. Recently, treatment with UDCA in hepatic graft-ver-sus-host disease has been given in immunosuppressive therapy for improvement of the biochemical markers of cholestasis. Moreover, it has been reported that UDCA possesses immunomodulatory effects by the suppression of cytokine production. In the present study, we hypothesized that UDCA may inhibit the production of the pro-inflammatory cytokine, IL-1β, and nitric oxide (NO) in microglia. In the study, we found that 100 μg/mL UDCA effectively inhibited these two pro-inflammatory factors at 24 h and 48 h, compared to the Ap42-pre-treated groups. These results were compared with the LPS+UDCA group to confirm the UDCA effect. As microglia can be activated by several stimulants, such as Aβ42, in Alzheimers brain and can release those inflammatory factors, the ability to inhibit or at least decrease the production of IL-1β and NO in Alzheimers disease (AD) is essential. Using RT-PCR, ELISA and the Griess Reagent System, we therefore found that UDCA in Aβ42 pre-treated cultures played a significant role in suppressing the expression or the production of IL-1β and NO. Similarly, lipopolysaccharide (LPS) did not activate microglia in the presence of UDCA. Moreover, we found that UDCA exhibits a prolonged effect on microglial cells (up to 48 h), which suggests that UDCA may play an important role in chronic cell damage due to this long effect. These results further imply that UDCA could be an important cue in suppressing the microglial activation stimulated by massive Aâ peptides in the AD progressing brain.

Key words

Microglia Ursodeoxycholic acid (UDCA) Alzheimer’s disease IL-1β Nitric oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banati, R. B., Gehrmann, J., Schubert, P., and Kreutzberg, G. W., Cytotoxicity of microglia.Glia, 7, 111–118 (1996).CrossRefGoogle Scholar
  2. Bayer, T. A., Wirths, O., Majtenyl, K., Hartmann, T., Multhaup, G., Beyreuther, K., and Czech, C., Key factors in Alzheimer’s disease: β-amyloid precursor protein processing, metabolism, and intraneuronal transport.Brain Pathology, 11, 1–11 (2001).PubMedCrossRefGoogle Scholar
  3. Benveniste, E. N., Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action.Am. J. Physiol., 263, C1–16 (1992).PubMedGoogle Scholar
  4. Beuers, U., Boyer, J. L., and Paumgartner, G., Ursodeoxycholic acid in cholestasis: Potential mechanisms of action and therapeutic applications.Hepatology, 28, 1449–1453 (1998).PubMedCrossRefGoogle Scholar
  5. Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. C., and Peterson, P. K., Activated microglia mediated neuronal cell injury via a nitric oxide mechanism.J. Immunol., 149, 2736–2741 (1992).PubMedGoogle Scholar
  6. Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., and Brosnan, C., Microglia and cytokines in neurological disease, with special REFERENCe to AIDS and Alzheimer’s disease. [Review].Glia, 7, 75–83. (1993).PubMedCrossRefGoogle Scholar
  7. Forloni, G., Demichelli, F., Giorgi, S., Bendotti, C., and Angeretti, N., Expression of amyloid precursor protein mRNAs in endothelial, neuronal, and glial cell: modulation by interleukin-1.Brain. Res., 16, 128–134 (1992).CrossRefGoogle Scholar
  8. Giulian, D., Ameboid microglia as effectors of inflammation in the central nervous system.J. Neuroscience. Res., 18, 155–171 (1987).CrossRefGoogle Scholar
  9. Giulian, D., Baker, T. J., Shih, L., and Lachman, L. B., Interleukin-1 of the central nervous system is produced by ameboid microglia.J. Exp. Med., 164, 594 (1986).PubMedCrossRefGoogle Scholar
  10. Hirano, F., Tanaka, H., Makino, Y., Okamoto, K., and Makino, I., Effects of ursodeoxycholic acid and chenodeoxycholic acid on major histocompatibility complex class I gene expression.J. Gastroenterol., 31 (1), 55–60 (1996).PubMedCrossRefGoogle Scholar
  11. Invernizzi, P., Salzman, A. L., Szabo, C., Ueta, I., O’Connor, M., and Setchell, K. D., Ursodeoxycholate inhibits induction of NOS in human intestinal epithelial cells vivo.Am. J. Physiol., 273, G131–138 (1997).PubMedGoogle Scholar
  12. Jaffrey, S. R. and Snyder, S. H., Nitric oxide: a neural messenger.Annu. Rev. Cell. Dev., 11, 417–440 (1995).CrossRefGoogle Scholar
  13. Joo, S. S., Chang, J. K., Park, J. H., Kang, H. C., and Lee, D. I., Immuno activation of lectin-conjugated praecoxin A on IL-6, IL-12 expression.Arch. Pharm. Res., 25, 954–963 (2002).PubMedCrossRefGoogle Scholar
  14. Kim, S. H., Won, S. J., Sohn, S. H., Kwon, H. J., Lee, J. Y., Park, J. H., and Gwag, B. J., Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translocational activation of NADPH oxidase.J. Cell Biol., 159, 821–831 (2002).PubMedCrossRefGoogle Scholar
  15. Kim, W. G., Mohney, R. P., Wilson, B., Heohn, G. H., Liu, B., and Hong, J. S., Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia.J. Neurosci., 20, 6309–6316 (2000).PubMedGoogle Scholar
  16. Liu, L., Sakaguchi, T., Cui, X., Shirai, Y., Nishimaki, T., and Hatakeyama, K., Liver regeneration enhanced by orally administered ursodesoxycholic acid is mediated by immunosuppression in partially hepatectomized rats.Am. J. Chin. Med., 30 (1), 119–126 (2002).PubMedCrossRefGoogle Scholar
  17. Lue, L., Rydel, R., Brigham, E. F., Yang, L., Hampek, H., Murphy, G. M., Brachova, L., Yan, S., Walker, D. G., Shen, Y., and Rogers, J., Inflammatory repertoire of Alzheimer’s disease and nondemented elderly vitro.Glia, 35, 72–79 (2001).PubMedCrossRefGoogle Scholar
  18. Lue, L. R and Walker, D. G., Modeling Alzheimer’s disease immune therapy mechanisms; interaction of human postmortem microglia with antibody- opsonized amyloid beta peptide.J. Neurosci. Res. 70 (4), 599–610 (2002).PubMedCrossRefGoogle Scholar
  19. Mrak, R. E., Sheng, J. G., and Griffin, W. S. T., Glial cytokines in Alzheimers disease: review and pathogenic implication.Hum. Pathol., 26, 816–823 (1995).PubMedCrossRefGoogle Scholar
  20. Paresce, D. M., Chung, H., and Maxfield, Slow degration of aggregates of the Alzheimers disease amyloid beta-protein by microglial cell.J. Biol. Chem., 272, 29390–29397 (1997).PubMedCrossRefGoogle Scholar
  21. Paumgartner, G. and Beuers, U., Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited.Perspectives In Clinical Hepatology, 525–530 (2002).Google Scholar
  22. Possel, H., Noack, H., Putzke, J., Wolf, G., and Sies, H., Selective upregulation of inducible Nitric Oxide Synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia.Glia, 32, 51–59 (2000).PubMedCrossRefGoogle Scholar
  23. Rodrigues, C. M. P., Ma, X., Kren, B. T., and Streer, C. J., A novel role for ursodeoxycholic acid in inhibiting apotosis by modulating mitochondrial membrane perturbation.J. Clin. Invest., 101 (12), 2790–2799 (1998).PubMedCrossRefGoogle Scholar
  24. Selkoe, D. J., The molecular pathology of Alzheimer’s disease. [Review.Neuron, 6, 487–498 (1991).PubMedCrossRefGoogle Scholar
  25. Shoda, M., Uber die Ursodeoxycholsaure aus Barengallen und ihre physiologische Wirkung.J. Biochem., 7, 505–517 (1927).Google Scholar
  26. Strijbos, P. J. and Rothwell, N. J., Interleukin-1beta attenuates excitatory amino acid-induced vitro: involvement of nerve growth factor.J. Neurosci., 153, 3468–3474 (1995).Google Scholar
  27. Varadarajan, S., Yatin, S., Aksenova, M., and Butterfield, D. A., Review: Alzheimers amyloid beta-peptide associated free radical oxidative stress and neurotoxicity.J. Structural Biol., 130, 184–208 (2000).CrossRefGoogle Scholar
  28. Webster, S. D., Park, M., Fonseca, M. I., and Tenner, A. J., Structural and functional evidence for microglial expression of C1qRP, the C1q receptor that enhances phagocytosis.J. Leukocyte Biology, 67, 109–116 (2000).Google Scholar
  29. Yoshikawa, M., Tsujii, T., Matsumura, K., Yamao, J., Matsumura, Y., Kubo, R., Fukui, H., and Ishizaka, S., Immunomodulatory effects of ursodeoxycholic acid on immune responses.Hepatology, 16 (2), 358–364 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  • Seong-Soo Joo
    • 1
  • Hee-Chul Kang
    • 1
  • Tae-Joon Won
    • 1
  • Do-Ik Lee
    • 1
  1. 1.Department of ImmunologyCollege of Pharmacy, Chung-Ang UniversitySeoulKorea

Personalised recommendations