Skip to main content
Log in

Evolutionsmodelle für den Ursprung der Echinodermen: Zusammenfassung und Kritik

Hypotheses for the origin of echinoderms: summary and discussion

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Kurzfassung

Bisherige Theorien und Ableitungsmodelle für den Ursprung der Echinodermen werden gegenüber gestellt.Garstang, Romer undNichols ermitteln eine ursprüngliche (basale) stammesgeschichtliche Position der Echinodermen und ein Schwesterngruppenverhältnis von Hemichordaten und Chordaten.Jefferies undHolland nehmen für die Echinodermen eine abgeleitete Position ein. Sie sehen zwar die Hemichordaten an der Basis der Deuterostomier, postulieren aber ein Schwesterngruppenverhältnis von Echinodermen und Chordaten.Gisléns Ausführungen lassen sich sinngemäß interpretieren. NachJollie, Mooi &David sowiePeterson et al. sind Echinodermen und Hemichordaten Schwesterngruppen.Gutmann sowieGudo übernehmen das alte Konzept vonMetschnikoff, fassen die Echinodermen mit den Enteropneusten und Pterobranchiern zu den Ambulacrariern zusammen und leiten sie von Pterobranchier-artigen Vorläufern ab. Zum Teil sind diese abweichenden Ergebnisse in den verwendeten Rekonstruktionsmethoden begründet.Garstang, Romer, Jefferies undGislén vergleichen morphologische Merkmale,Gislén zusätzlich noch embryologische.Jollie undHolland bedienen sich ebenfalls (wieGislén) der biogenetischen Grundregel.Mooi & David sowiePeterson et al. verfolgen einen moderneren ontogenetischen (epigenetischen) Ansatz.Nichols kombiniert Merkmalsvergleich und Funktionsmorphologie. Evolutionsszenarien werden nur von wenigen Autoren rekonstruiert.Holland bringt die Entstehung der Echinodermen aus einem pterobranchierartigen Vorläufer mit einem zweifachen Wechsel der Ernährungsweise in Verbindung.Nichols leitet die Echinodermen von sich zum Schutz vor Fressfeinden panzernden Sipunculiden ab. Im Rahmen eigener konstruktionsmorphologischer Arbeiten werden die Echinodermen als stark spezialisierte Chordaten-Abkömmlinge rekonstruiert.

Abstract

The origin of echinoderms is one of the most crucial questions within the evolutionary history of deuterostomes. An ancestral position was suggested byGarstang, Romer andNichols. They also assumed that hemichordates and chordates are sistergroups. In all other hypotheses the echinoderms took a more derived position.Gislén, Jefferies andHolland viewed the hemichordates as basal to the deuterostomes and postulated that echinoderms and chordates are sistergroups. According toJollie, Peterson et al. andMooi & David echinoderms and hemichordates are sistergroups.Gudo andGutmann adopted the view ofMetschnikoff who combined the hemichordates and echinoderms in the Ambulacraria; they supposed that echinoderms were derived from pterobranchs. This variety of views is linked with different approaches to phylogenetic reconstruction utilized by each of the authors.Garstang, Romer, Jefferies andGislén compared morphological features, in the case ofGislén andJefferies with some attention to fossil evidence, whereasJollie, Holland andGislén also considerd embryological aspects.Mooi &David as well asPeterson et al. used modern embryological (epigenetical) approaches.Nichols combined functional morphology and comparative anatomy. Evolutionary scenarios were reconstructed only by a few authors.Holland associated the development of echinoderms from pterobranch-like ancestors with repeated changes in feeding modes.Nichols envisioned that echinoderms had evolved from sipunculids that gained protection from predators through skeletal armor. In our own investigations based on constructional morphology echinoderms are interpreted as highly derived chordates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Adoutte, A.;Balavoine, G.;Lartillot, N. &De Rosa, R. 1999. The end of the intermediate taxa? — Trends in Genetics15: 104–108.

    Article  Google Scholar 

  • Balavoine, G.;De Rosa, R. &Adoutte, A. 2002. Hox clusters and bilaterian phylogeny. — Molecular Phylogenetics and Evolution24: 366–373.

    Article  Google Scholar 

  • Balser, E.J. &Ruppert, E.E. 1990. Structure, ultrastructure, and function of the preoral heart-kidney inSaccoglossus kowalevskii (Hemichordata, Enteropneusta) including new data on the stomochord. — Acta Zoologica71: 235–249.

    Google Scholar 

  • Bateson, W. 1884. Note on the later stages in the development ofBalanoglossus kowalevskii (Agassiz), and on the affinities of the Enteropneusta. — Proceedings of the Royal Society of London38: 23–30.

    Article  Google Scholar 

  • Bateson, W. 1886. The ancestry of Chordata. — Quarterly Journal of Microscopical Science26: 535–571.

    Google Scholar 

  • Bather, F.A. 1901. What is an Echinoderm? — Journal of the London College Society7: 21–33.

    Google Scholar 

  • Bather, F.A. 1925.Cothurnocystis, a case study in adaptation. — Paläontologische Zeitschrift7: 1–15.

    Google Scholar 

  • Beaver, H.H.;Caster, K.E.;Durham, J.W.;Fay, R.O.;Fell, H.B.;Kesling, R.V.;Macurda, D.B. jr.;Moore, R.C;Ubaghs, G. &Wanner, J. 1967. Echinodermata 1. — In:Moore, R.C, Hrsg., Treatise on Invertebrate Paleontology. Part S. Echinodermata 1. — 1–650, Lawrence, Kans. (The Geological Society of America & The University of Kansas).

    Google Scholar 

  • Belayev, G.M. 1990. Is it valid to isolate the genusXyloplax as an independent class of echinoderms? — Zoologicheskij Zhurnal69: 83–96.

    Google Scholar 

  • Blake, D.F. &Peacor, D.R. 1981. Biomineralization on crinoid echinoderms. Characterization of crinoid skeletal elements using TEM and STEM microanalysis. — Scanning Electron Microscopy1981 (3): 321–328.

    Google Scholar 

  • BOCK, W.J. 1991. Explanations in konstruktionsmorphologie and evolutionary morphology. — In:Schmidt-Kittler, N. &Vogel, K.P., Hrsg., Constructional morphology and evolution: 9–29, Heidelberg (Springer).

    Google Scholar 

  • Bonik, K. &Gutmann, W.F. 1978. Die Biotechnik der Doppel-Hydraulik (Chorda-Sklerocoelen-Myomeren-System) bei den Acraniern. — Senckenbergiana biologica58: 275–286.

    Google Scholar 

  • Bonik, K. &Gutmann, W.F. 1982. Evolution, Energiefluß und das Organisationsproblem der Lebewesen. — Aufsätze und Reden der Senckenbergischen Naturforschenden Gesellschaft33: 55–80.

    Google Scholar 

  • Bonik, K.;Grasshoff, M. &Gutmann, W.F. 1979. Die Evolution von Larven als Verbreitungsstadien bodenlebender Meerestiere. — Natur und Museum109: 70–79.

    Google Scholar 

  • Bonik, K.;Gutmann, W.f. &Haude, R. 1978. Stachelhäuter mit Kiemenapparat; Der Beleg für die Ableitung der Echinodermen von Chordatieren. — Natur und Museum108: 211–214.

    Google Scholar 

  • Bonik, K.;Gutmann, W.F. &Peters, D.S. 1977. Optimierung und Ökonomisierung im Kontext der Evolutionstheorie und phylogenetischer Rekonstruktionen. — Acta Anatomica26: 75–119.

    Google Scholar 

  • Briggs, D.E.G. &Kear, A.J. 1994. Decay ofBranehiostoma: implications for soft-tissue preservation in conodonts and other primitive chordates. — Lethaia26: 275–287.

    Article  Google Scholar 

  • Bromham, L.D. &Degnan, B.M. 1999. Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. — Evolution & Development1: 166–171.

    Article  Google Scholar 

  • Cameron, C.B.;Garey, J.R. &Swalla, B.J. 2000. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. — Proceedings of the National Academy of Science, USA97: 4469–4474.

    Article  Google Scholar 

  • Clark, R.B. 1964. Dynamics in the metazoan evolution. The origin of the coelom and segments. — 313 S., Oxford (Clarendon).

    Google Scholar 

  • Currey, J.D. 1999. The design of mineralised hard tissues for their mechanical functions. — Journal of Experimental Biology202: 3285–3294.

    Google Scholar 

  • David, B.;Lefebvre, B.;Mooi, R. &Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. — Paleobiology26: 529–555.

    Article  Google Scholar 

  • Dawydoff, C. 1948. Conception morphologique du stomochordé. — In:Grassé, P.-P., Hrsg., Traité de Zoologie,11: 511–517, Paris (Masson).

    Google Scholar 

  • Dietrich, M.R. 2000. From Hopeful Monsters to homeotic effects:Richard Goldschmidt’s integration of development, evolution, and genetics. — American Zoologist40: 738–747.

    Article  Google Scholar 

  • Dominguez, P.;Jacobson, A.G. &Jefferies, R.P. 2002. Paired gill slits in a fossil with a calcite skeleton. — Nature417: 841–844.

    Article  Google Scholar 

  • Eaton, T.H. 1970. The stem-tail problem and the ancestry of chordates. — Journal of Paleontology44: 969–979.

    Google Scholar 

  • Furlong, R.f. &Holland, P.w.h. 2002. Bayesian phylogenetic analysis supports monophyly of ambulacraria and of cyclostomes. — Zoological Science19: 593–599.

    Article  Google Scholar 

  • Garstang, W. 1894. Preliminary note on a new theory of the phylogeny of Chordata. — Zoologischer Anzeiger27: 122–125.

    Google Scholar 

  • Garstang, W. 1928. The morphology of Tunicata and its bearing on the phylogeny of the Chordata. — Quarterly Journal of Microscopical Science72: 51–187.

    Google Scholar 

  • Gislén, T. 1930. Affinities between the Echinodermata, Enteropneusta and Chordonia. — Zoologiska Bidrag fran Uppsala12: 199–304.

    Google Scholar 

  • Goldschmidt, R. 1940. The material basis of evolution. — xi + 436 S., New Haven, Conn. (Yale University Press).

    Google Scholar 

  • Grobben, K. 1923. Theoretische Erörterungen betreffend die phylogenetische Ableitung der Echinodermen. — Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse, Abteilung 1132: 263–290.

    Google Scholar 

  • Gudo, M. 1997. Ist die Konstruktionsmorphologie ein Aktualistisches Prinzip der Paläontologie? — Courier Forschungsinstitut Senckenberg201: 145–160.

    Google Scholar 

  • Gudo, M. 2004. Die „hydraulische Skelettkapsel“ der Stachelhäuter (Echinodermen). — Natur und Museum134: 174–188.

    Google Scholar 

  • Gudo, M. 2004. Ziele der Evolutionsforschung: Rekonstruktion organismischer Wandlung als Morphoprozess. — In:Feigl, W.;Fleck, H. &Edlinger, K., Hrsg., Jenseits des Mainstreams. Alternative Ansätze in Biologie und Medizin: 61–90, Frankfurt (P. Lang — Europ. Verlag der Wissenschaften).

    Google Scholar 

  • Gudo, M. im Druck 2005. An evolutionary scenario for the origin of pentameric echinoderms — Implications from the hydraulic principles of form determination. — Acta Biotheoretica.

  • Gudo, M. im Druck 2005. Körperkonstruktion und evolutionäre Trends fossiler Echinodermen (Homalozoa, Bastoidea, Edrioasteroidea). — Senckenbergiana lethaea.

  • Gudo, M. &Gutmann, M. 2003. Konstruktija, rekonstruktzija i evoljutsionnyje mechanizmy. Evolution. Konstruktion, Rekonstruktion und Evolutionsmechanismen. — In:Levit, G.S.;Popov, I.y.;Hossfeld, U.;Olsson, L. &Breidbach, O., Hrsg., V teni darwinizma: alternativnyje teorii evoliutsii v XX veke. In the shadow of darwinism: alternative evolutionary theories in the 20th century: 174–191, St. Petersburg (Fineday-Press).

    Google Scholar 

  • Gudo, M.;Gutmann, M. &Scholz, J. 2002. Concepts of functional-, engineering- and constructional morphology: Biomechanical approaches to recent and fossil organisms. — 372 S., Stuttgart (Schweizerbart).

    Google Scholar 

  • Gutmann, W.F. 1969. Acranier und Hemichordaten, ein Seitenast der Chordaten. — Zoologischer Anzeiger182: 1–26.

    Google Scholar 

  • Gutmann, W.F. 1970. Die Entstehung des Muskelapparates der Hemichordaten. — Zeitschrift für Zoologische Systematik und Evolutionsforschung8: 139–154.

    Google Scholar 

  • Gutmann, W.F. 1973. Ein Paradigma für die phylogenetische Rekonstruktion — Die Entstehung der Hemichordaten. — Courier Forschungsinstitut Senckenberg9: 1–28.

    Google Scholar 

  • Gutmann, W.F. 1981. Relationships between invertebrate phyla based on functional-mechanical analysis of the hydrostatic skeleton. — American Zoologist21: 63–81.

    Google Scholar 

  • Gutmann, W.F. 1990. Restriktionen, Energie-Kanalisierung und Zwangsführung als Grundlage der modernen Morphologie. — Natur und Museum120: 325–335.

    Google Scholar 

  • Gutmann, W.F. 1991. Constructional principles and the quasi-experimental approach to organisms. — In:Schmidt-Kittler, N. &Vogel, K.P., Hrsg., Constructional morphology and evolution: 91–112, Heidelberg (Springer).

    Google Scholar 

  • Gutmann, W.F. 1992. Organismus und Energie. — Aufsätze und Reden der Senckenbergischen Naturforschenden Gesellschaft38: 9–25.

    Google Scholar 

  • Gutmann, W.F. &Bonik, K. 1979. Detaillierung des Acranier-und Enteropneusten-Modells. — Senckenbergiana biologica59: 325–363.

    Google Scholar 

  • Gutmann, W.F. &Weingarten, M. 1992. Grundlagen von Konstruktionsmorphologie und organismischer Evolutionstheorie. — Aufsätze und Reden der Senckenbergischen Naturforschenden Gesellschaft38: 51–68.

    Google Scholar 

  • Gutmann, W.F.;Bonik, K.;Grasshoff, M. &Peters, D.S. 1983. Die Anwendung der Evolutionstheorie auf die Entwicklung der vielzelligen Tiere. — In:Wendt, H., Hrsg., Kindlers Enzyklopädie — Der Mensch: 386–435, Zürich (Kindler).

    Google Scholar 

  • Halanych, K.M. 1995. The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. — Molecular Phylogenetics and Evolution4: 72–76.

    Article  Google Scholar 

  • Heider, K. 1912. Über Organ Verlagerungen bei der Echinodermen-Metamorphose. — Verhandlungen der Deutschen Zoologischen Gesellschaft22: 239–251.

    Google Scholar 

  • Hill, R.B. 2001. Role of Ca2+ in excitation-contraction coupling in echinoderm muscle: comparison with role in other tissues. — The Journal of Experimental Biology204: 897–908.

    Google Scholar 

  • Holland, N.D. 1988. The meaning of developmental symmetry for echinoderm evolution: a new interpretation. — In:Paul, C.R.C. &Smith, A.B., Hrsg., Echinoderm phylogeny and evolutionary biology: 13–25, Oxford (Clarendon).

    Google Scholar 

  • Holland, N.D. &Chen, J. 2001. Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. — Bioessays23: 142–151.

    Article  Google Scholar 

  • Hotchkiss, F.H.C. 1998. Discussion on pentamerism: The five-part pattern ofStromatocystis, Asterozoa, and Echinozoa. — In:Mooi, R. &Telford, M., Hrsg., Echinoderms: 32–42, Rotterdam (Balkema).

    Google Scholar 

  • Hyman, L.H. 1955. The Invertebrates: Echinodermata. — 763 S., New York (McGraw Hill).

    Google Scholar 

  • Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. — Paläontologische Zeitschrift3: 1–128.

    Google Scholar 

  • Janies, D. 2001. Phylogenetic relationships of extant echinoderm classes. — Canadian Journal of Zoology79: 1232–1250.

    Article  Google Scholar 

  • Jefferies, P.P. &Brown, N.A. 1995. Dorsoventral axis inversion? — Nature374: 22.

    Article  Google Scholar 

  • Jefferies, R.P.S. 1967. Some fossil chordates with echinoderm affinities. — Symposia of the Zoological Society of London20: 163–208.

    Google Scholar 

  • Jefferies, R.P.S. 1968. The subphylum Calcichordata (Jefferies 1967) — Primitive fossil chordates with echinoderm affinities. — Bulletin of the British Museum (Natural History) Geology16: 241–339.

    Google Scholar 

  • Jefferies, R.P.S. 1973. The Ordovician fossilLagynocystis pyramidalis (Barrande) and the ancestry ofAmphyoxus. — Philosophical Transactions of the Royal Society of London, B: Biological Sciences265: 409–469.

    Article  Google Scholar 

  • Jefferies, R.P.S. 1975. Fossil evidence concerning the origin of the chordates. — Symposia of the Zoological Society of London36: 253–318.

    Google Scholar 

  • Jefferies, R.P.S. 1984. Locomotion, shape, ornament, and external ontogeny in some mitrate calcichordates. — Journal of Vertebrate Paleontology4: 292–319.

    Google Scholar 

  • Jefferies, R.P.S. 1986. The ancestry of vertebrates. — 376 S., Cambridge (Cambridge University Press).

    Google Scholar 

  • Jefferies, R.P.S. 1988. How to characterize the Echinodermata — some implications of the sister-group relationship between echinoderms and chordates. — In:Paul, C.R.C. &Smith, A.B., Hrsg., Echinoderm phylogeny and evolutionary biology: 3–12, Oxford (Clarendon).

    Google Scholar 

  • Jefferies, R.P.S. 1990. The soluteDendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. — Palaeontology33: 631–679.

    Google Scholar 

  • Jefferies, R.P.S. 1991. Two types of bilateral symmetry in the Metazoa: chordate and bilaterian. — Ciba Found Symposium162: 94–120, 121–127.

    Google Scholar 

  • Jefferies, R.P.S. 1997. A defence of the calcichordates. — Lethaia30: 1–10.

    Google Scholar 

  • Jefferies, R.P.S. 2001. The origin and early fossil history of the chordate acustico-lateralis system, with remarks on the reality of the echinoderm-hemichordate clade. — In:Ahlberg, P.E., Hrsg., Major events in early vertebrate evolution: 40–66, London (Taylor & Francis).

    Google Scholar 

  • Jefferies, R.P.S. &Lewis, D.N. 1978. The English Silurian fossilPlacocystites forbesianus and the ancestry of the vertebrates. — Philosophical Transactions of the Royal Society of London, B: Biological Sciences265: 409–469.

    Article  Google Scholar 

  • Jefferies, R.P.S.;Brown, N.A. &Daley, P.E.J. 1996. The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. — Acta Zoologica77: 101–122.

    Google Scholar 

  • Jenner, R.A. 2000. Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. — Evolution and Development2: 208–221.

    Article  Google Scholar 

  • Johnson, A.S.;Ellers, O.;Lemire, J.;Minor, M. &Leddy, H.A. 2002. Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins. — Proceedings of the Royal Society of London, B: Biological Sciences269: 215–220.

    Article  Google Scholar 

  • Jollie, M. 1962. Chordate morphology. — 478 S., London (Chapman & Hall).

    Google Scholar 

  • Jollie, M. 1982. What are the “Calcichordata”? and the larger question of the origin of chordates. — Zoological Journal of the Linnean Society of London75: 167–188.

    Article  Google Scholar 

  • Kolata, D.R.;Frest, T.J. &Mapes, R.H. 1991. The youngest carpoid: occurence, affinities and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma, — Journal of Paleontology65: 844–855.

    Google Scholar 

  • Lacalli, T. &West, J. 1993. A distinctive nerve cell type common to diverse deuterostome larvae: comparative data from echinoderms, hemichordates andAmphioxus. — Acta Zoologica74: 1–8.

    Article  Google Scholar 

  • Lee, M.S.Y. 1999. Molecular phytogenies become functional. — Trends in Ecology & Evolution14: 177–178.

    Article  Google Scholar 

  • Lefebvre, B. &David, B. 2001. Ichnological evidence on the behaviour of mitrates: reply. — Lethaia34: 260–261.

    Article  Google Scholar 

  • Levit, G.S.;Gudo, M. &Krumbein, W.E. 2002. Mechanizismus in 21. Jahrhundert. — Verhandlungen zur Geschichte und Theorie der Biologie9: 97–124.

    Google Scholar 

  • Lowe, C.J. &Wray, G.A. 1997. Radical alterations in the roles of homeobox genes during echinoderm evolution. — Nature389: 718–721.

    Article  Google Scholar 

  • Mallatt, J. &Chen, J.Y. 2003. Fossil sister group of craniates: predicted and found. — Journal of Morphology258: 1–31.

    Article  Google Scholar 

  • Mallatt, J. &Winchell, C.J. 2002. Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. — Molecular Biology and Evolution19: 289–301.

    Google Scholar 

  • Mallatt, J.;Chen, J. &Holland, N.D. 2003. Comment on “A new species of yunnanozoan with implications for deuterostome evolution”. — Science300: 1372; author reply 1372.

    Article  Google Scholar 

  • Mayer, G. &Bartholomaeus, T. 2003. Ultrastructure of the stomochord and the heart-glomerulus complex inRhabdopleura compacta (Pterobranchia): phylogenetic implications. — Zoomorphology122: 125–133.

    Article  Google Scholar 

  • Metschnikoff, V.E. 1881. Über die systematische Stellung vonBalanoglossus. — Zoologischer Anzeiger4: 139–157.

    Google Scholar 

  • Mooi, R. &David, B. 1998. Evolution within a bizarre phylum: homologies of the first echinoderms. — American Zoologist38: 965–974.

    Google Scholar 

  • Mooi, R.;David, B. &Marchand, D. 1994. Echinoderm skeletal homologies: Classical morphology meets modern phylogenetics. — In:David, B.;Guille, A.;Féral, J.-P. &Roux, M., Hrsg., Echinoderms through time: 87–95, Rotterdam (Balkema).

    Google Scholar 

  • Nezlin, L.P. 2000. Tornaria of hemichordates and other dipleurulatype larvae: a comparison. — Journal for Zoological Systematics and Evolutionary Research38: 149–156.

    Article  Google Scholar 

  • Nichols, D. 1962. Echinoderms. — 200 S., London (Hutchinson).

    Google Scholar 

  • NICHOLS, D. 1967. The origin of echinoderms. — Symposia of the Zoological Society of London20: 209–229.

    Google Scholar 

  • NICHOLS, D. 1967. Pentamerism and the calcite skeleton in echinoderms. — Nature215: 665–666.

    Article  Google Scholar 

  • Paul, C.R.C. &Smith, A.B. 1984. The early radation and phylogeny of echinoderms — a cladistic analysis. — Biological Reviews59: 443–481.

    Article  Google Scholar 

  • Peterson, K.J.;Arenas-Mena, C. &Davidson, E.H. 2000. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. — Evolution and Development2: 93–101.

    Article  Google Scholar 

  • Pflugfelder, O. 1962. Lehrbuch der Entwicklungsgeschichte und Entwicklungsphysiologie der Tiere. — 347 S., Jena (VEB G. Fischer).

    Google Scholar 

  • Philip, G.M. 1979. Carpoids — echinoderms or chordates. — Biological Reviews59: 443–481.

    Google Scholar 

  • Romer, A.S. 1959. The vertebrate story. — vii + 437 S., Chicago (University of Chicago Press).

    Google Scholar 

  • Romer, A.S. 1966. Vergleichende Anatomie der Wirbeltiere. — 536 S., Hamburg (Parey).

    Google Scholar 

  • Romer, A.S. 1966. Vertebrate paleontology. — 468 S., Chicago (University of Chicago Press).

    Google Scholar 

  • Romer, A.S. &Parson, T.S. 1991. Vergleichende Anatomie der Wirbeltiere. — 624 S., Hamburg (Parey).

    Google Scholar 

  • Rowe, F.W.E.;Baker, A.N. &Clark, H.E.S. 1988. The morphology, development and taxonomic status ofXyloplax Baker, Rowe and Clark (1986) (Echinodermata: Concentricyloidea), with the description of a new species. — Proceedings of the Royal Society of London, B: Biological Sciences233: 431–459.

    Google Scholar 

  • Ruta, M. 1999. Brief review of the stylophoran debate. — Evolution & Development1: 123–135.

    Article  Google Scholar 

  • Ruta, M. 1999. A cladistic analysis of the anomalocystitid mitrates. — Zoological Journal of the Linnean Society of London127: 345–421.

    Article  Google Scholar 

  • Schmidt-Kittler, N. &Vogel, K.P. 1991. Constructional morphology and evolution. — 409 S., Heidelberg (Springer).

    Google Scholar 

  • Seilacher, A. 1981. Funktionelle Abwandlung des Echinodermen-Stereoms. — In:Reif, W.-E., Hrsg., Paläontologische Kursbücher: 49–60, München (Paläontologische Gesellschaft).

    Google Scholar 

  • Shu, D.-G.;Chen, L.-Z.;Han, J. &Zhang, X.-L. 2001. An Early Cambrian tunicate from China. — Nature411: 472–473.

    Article  Google Scholar 

  • Shu, D.-G.;Luo, H.-L.;Morris, S.C.;Zhang, X.-L.;Hu, S.-X.;Chen, L.;Han, J.;Zhu, M.;Li, Y. &Chen, L.-Z. 1999. Lower Cambrian vertebrates from south China. — Nature402: 42–46.

    Article  Google Scholar 

  • Shu, D.;Morris, S.C.;Zhang, Z.F.;Liu, J.N.;Han, J.;Chen, L.;Zhang, X.L.;Yasui, K. &Li, Y. 2003. A new species of Yunnanozoan with implications for deuterostome evolution. — Science299: 1380–1384.

    Article  Google Scholar 

  • Siewing, R. 1969. Lehrbuch der vergleichenden Entwicklungsgeschichte der Tiere. — 531 S., Hamburg (Parey).

    Google Scholar 

  • Smith, A.B. 1980. Stereom microstructure in the echinoid test. — Special Papers in Palaeontology25: 1–81.

    Google Scholar 

  • Smith, A.B. 1984. The classification of Echinodermata. — Palaeontology27: 431–459.

    Google Scholar 

  • Smith, D.S.;Del Castillo, J.;Morales, M. &Luke, B. 1990. The attachment of collagenous ligament to stereom in primary spines of the sea-urchin,Eucidaris tribuloides. — Tissue Cell22: 157–176.

    Article  Google Scholar 

  • Smith, M.J.;Arndt, A.;Gorski, S. &Fajber, E. 1993. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. — Journal of Molecular Evolution36: 545–554.

    Article  Google Scholar 

  • Sutcliffe, O.E.;Südkamp, W.H. &Jefferies, R.P.S. 2000. Ichnological evidence on the behaviour of mitrates: two trails associated with the Devonian mitrateRhenocystis. — Lethaia33: 1–12.

    Article  Google Scholar 

  • Syed, T. 2003. Wie neu ist die „New Animal Phylogeny“? — Eine mögliche Synthese morphologischer und molekularer Befunde zur Bauplan-Evolution. — Jahrbuch für Geschichte und Theorie der Biologie9: 33–76.

    Google Scholar 

  • Turbeville, J.M.;Schulz, J.R. &Raff, RA. 1994. Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. — Molecular Biology and Evolution11: 648–655.

    Google Scholar 

  • Ubaghs, G. 1967. Stylophora. — In:Beaver, H.H.;Caster, K.E.;Durham, J.W.;Fay, R.O.;Fell, H.B.;Kesling, R.V.;Macurda jr., D.B.;Moore, R.C.;Ubaghs, G. &Wanner, J. 1967. Echinodermata 1. — In:Moore, R.C., Hrsg., Treatise on Invertebrate Paleontology. Part S. Echinodermata 1. — 495–565, Lawrence, Kans. (The Geological Society of America & The University of Kansas).

    Google Scholar 

  • Vogel, K.P. 1983. Zur gegenwärtigen Diskussion um die Makroevolution (punctuated equilibria). — Paläontologische Zeitschrift57: 199–203.

    Google Scholar 

  • Vogel, K.P. 1989. Constructional morphology and the reconstruction of phylogeny. — Abhandlungen des Naturwissenschaftlichen Vereins28: 255–264.

    Google Scholar 

  • Vogel, K.P. 1991. Concepts of constructional morphology. — In:Schmidt-kittler, N. &Vogel, K., Hrsg., Constructional morphology and evolution: 55–68, Heidelberg (Springer)

    Google Scholar 

  • Vogel, K.P. 1991. Konstruktionsmorphologie: Ein Schlüssel zum Verständnis der Biologischen Evolution. — Sitzungsberichte der wissenschaftlichen Gesellschaft an der Johann Wolfgang Goethe-Universität Frankfurt am Main28: 1–56.

    Google Scholar 

  • Wada, H. &Satoh, N. 1994. Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. — Journal of Molecular Evolution38: 41–49.

    Article  Google Scholar 

  • Wägele, J.-W. 2000. Grundlagen der Phylogenetischen Systematik. — 315 S., München (F. Pfeil).

    Google Scholar 

  • Welsch, U. &Heinzeller, T. 1994. Crinoidea. — In:Harrison, F.W. &Rupper, E.E., Hrsg., Microscopic anatomy of invertebrates: 9–148, New York (Wiley).

    Google Scholar 

  • Wendt, H. &Gutmann, W.F. 1972. Der stammesgeschichtliche Zusammenhang des Tierreichs. — In:Heberer, G. &Wendt, H., Hrsg., Grzimeks Tierleben, Ergänzungsband Entwicklungsgeschichte der Lebewesen: 66–94, München (Kindler).

    Google Scholar 

  • Westheide, W. &Rieger, R. 1996. Spezielle Zoologie, 1. Einzeller und Wirbellose Tiere. — 909 S., Stuttgart (G. Fischer).

    Google Scholar 

  • Wilkie, I.C. 1984. Variable tensility in echinoderm collagenous tissues: a review. — Marine and Freshwater Behaviour & Physiology11: 1–34.

    Article  Google Scholar 

  • Wilkie, I.C. &Emson, R.H. 1988. Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny. — In:Paul, C.R.C. &Smith, A.B., Hrsg., Echinoderm phylogeny and evolutionary biology: 311–330, Oxford (Clarendon).

    Google Scholar 

  • Winchell, C.J.;Sullivan, J.;Cameron, C.B.;Swalla, B.J. &Mallatt, J. 2002. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. — Molecular Biology and Evolution19: 762–776.

    Google Scholar 

  • Zrzavy, J.;Mihulka, S.;Kepka, P.;Bezdek, A. &Tietz, D. 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. — Cladistics14: 249–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gudo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudo, M., Dettmann, F. Evolutionsmodelle für den Ursprung der Echinodermen: Zusammenfassung und Kritik. Paläontol Z 79, 305–338 (2005). https://doi.org/10.1007/BF02991926

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02991926

Schlüsselwörter

Keywords

Navigation