Paläontologische Zeitschrift

, Volume 81, Issue 4, pp 406–415 | Cite as

Enigmatic new mammals from the late Eocene of Egypt

  • Marcelo R. Sánchez-Villagra
  • Erik R. Seiffert
  • Thomas Martin
  • Elwyn L. Simons
  • Gregg F. Gunnell
  • Yousry Attia


A new mammalian genus and species from the earliest late Eocene of Egypt is represented by a lower jaw fragment and two isolated lower molars. A rare combination of features and the fragmentary nature of the materials make their taxonomic assignment to either Marsupialia or Chiroptera uncertain. The holotype of the new genus is the best-preserved specimen in the sample, a dentary fragment with two molars that have uncompressed trigonids, weak buccal cingulids, and a nyctalodont arrangement of the hypocristid. Some traits appear to more clearly support marsupial, as opposed to chiropteran, affinities for this species, including the very likely presence of four molars in the dentary. The enamel of an additional lower molar assigned to this species consists of a single layer of radial enamel without any prism decussation, an enamel type that characterizes marsupials as well as chiropterans. A second taxon is represented by two isolated upper molars. Some traits appear to more clearly support marsupial, as opposed to chiropteran, affinities for these species, including the orientation of pre- and postprotocristae, the moderately slender lingual portion of the trigon, and the absence of any talon expansion. As some of these features can be found in various bat clades, chiropteran affinities for these species cannot be ruled out, but we propose that the new taxa are more likely to represent specialized ‘didelphimorphian’ marsupials.


Africa Fayum Metatheria Didelphimorphia Chiroptera Biogeography Enamel 


Aus dem untersten Ober-Eozän von Ägypten liegen ein Unterkiefer-Fragment und zwei isolierte untere Molaren einer neuen Säugetier-Gattung und -Art vor. Die ungewöhnliche Merkmalskombination und der fragmentarische Erhaltungszustand der Stücke lassen eine Zuordnung zu den Marsupialia oder Chiroptera möglich erscheinen. Das Unterkieferfragment (Holotyp) enthält zwei Molaren mit unkomprimierten Trigoniden, schwach entwickelten buccalen Cinguliden und einer nyctalodonten Anordnung des Hypocristids. Der Kiefer hat ursprünglich vermutlich vier Molaren besessen, was für eine Zuordnung zu den Marsupialiern spräche. Der Schmelz eines der neuen Art zugeordneten isolierten unteren Molaren besteht aus einer einfachen Lage von Radialschmelz (ohne Prismenüberkreuzung), ein Schmelztyp, der sowohl bei den Marsupialia als auch bei den Chiroptera vorkommt. Ein zweites Taxon ist durch zwei einzelne obere Molaren repräsentiert. Auch hier sprechen manche Merkmale eher für eine Zuweisung zu den Marsupialia, unter anderem die Anordnung der Prä- und Protocristae, der mäßig schlanke linguale Teil des Trigons und das Fehlen einer Talon-Ausweitung. Da einige dieser Merkmale auch bei verschiedenen Fledermäusen auftreten, kann eine Zugehörigkeit zu den Chiroptera nicht ausgeschlossen werden, obwohl wir zu der Auffassung tendieren, dass es sich bei beiden neuen Taxa eher um spezialisierte „didelphomorphe“ Beuteltiere handelt.


Afrika Fayum Metatheria Didelphimorphia Chiroptera Biogeographie Schmelz 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Averianov, A.O.;Archibald, J.D. &Martin, T. 2003. Placental nature of the alleged marsupial from the Cretaceous of Madagascar. — Acta Palaeontologica Polonica48: 149–151.Google Scholar
  2. Bown, T.M. &Simons, E.L. 1984. First record of marsupials (Metatheria: Polyprotodonta) from the Oligocene in Africa. — Nature308: 447–449.CrossRefGoogle Scholar
  3. Cifelli, R.L. 1993. Early Cretaceous mammal from North America and the evolution of marsupial dental characters. — Proceedings of the National Academy of Sciences, USA90: 9413–9416.CrossRefGoogle Scholar
  4. Crochet, J.-Y. 1980. Les marsupiaux du Tertiaire d’Europe. — 279 p., Paris (Éditions de la Foundation Singer-Polignac).Google Scholar
  5. Crochet, J.-Y. 1984.Garatherium mahboubii nov. gen., nov. sp., marsupial de l’Eocène inférieur d’El Kohol (Sud Oranais, Algérie). — Annales Palaeontologie (Vert. — Invert.)70: 275–294.Google Scholar
  6. Crochet, J.-Y. 1986.Kasserinotherium tunisiense nov. gen., nov. sp., troisième marsupial découvert en Afrique (Eocène inférieur de Tunisie). — Comptes Rendus de l’Académie des Sciences, Paris302: 923–926.Google Scholar
  7. Crochet, J.-Y.;Thomas, H.;Sen, S.;Roger, J.;Gheerbrant, E. &Al-Sulaimani, Z. 1992. Découverte d’un péradectidé (Marsupialia) dans l’Oligocène inférieur du Sultanat d’Oman: nouvelles données sur la paléobiogéographie des marsupiaux de la plaque arabo-africaine. — Comptes Rendus de l’Académie des Sciences, Paris314: 539–545.Google Scholar
  8. Emry, R.J.;Lucas, S.G.;Szalay, F.S. &Tleuberdina, P.A. 1995. A new herpetotheriine didelphid (Marsupialia) from the Oligocene of Central Asia. — Journal of Vertebrate Paleontology15: 850–854.Google Scholar
  9. Ferreira, J.M.;Phakey, P.P.;Plamara, J.;Rachinger, W.A. &Orams, H.J. 1989. Electron microscopic investigation relating the occlusal morphology to the underlying enamel structure of molar teeth of the wombat (Vombatus ursinus). — Journal of Morphology200: 141–149.CrossRefGoogle Scholar
  10. Gheerbrant, E. 1991.Bustylus (Eutheria, Adapisoriculidae) and the absence of ascertained marsupials in the Palaeocene of Europe. — Terra Research3: 586–592.CrossRefGoogle Scholar
  11. Gheerbrant, E. 1995. Les mammifères Paléocènes du Bassin d’Ouarzazate (Maroc) III. Adapisoriculidae et autres mammifères (Carnivora, ?Creodonta, Condylarthra, ?Ungulata et incertae sedis). — Palaeontographica (A)237: 39–132.Google Scholar
  12. Gheerbrant, E. &Russell, D.E. 1991.Bustylus cernayi nov. gen., nov. sp., nouvel adapisoriculidé (Mammalia, Eutheria) Paléocène d’Europe. — Geobios24: 467–481.CrossRefGoogle Scholar
  13. Gill, T. 1872. Arrangement of the families of mammals with analytical tables. — Smithsonian Miscellaneous Collection11 (230/1): 1–98.Google Scholar
  14. Godinot, M. 1994. Early North African primates and their significance for the origin of simiformes. — In:Fleagle, J.G. &Kay, R.F., eds., Anthropoid origins: 235–296, New York (Plenum Press).Google Scholar
  15. Godinot, M. &Mahboubi, M. 1992. Earliest known simian primate found in Algeria. — Nature357: 324–326.CrossRefGoogle Scholar
  16. Goin, F.J. 1993. Living South American opossums are not living fosils. — Abstracts, 6th International Theriological Congress, Sydney, p. 112.Google Scholar
  17. Goin, F.J. &Candela, A.M. 2004. New Palaeogene marsupials from the Amazon Basin of Eastern Perú. — In:Campbell, K.E., ed., The Paleogene mammalian fauna of Santa Rosa, Amazonian Peru. — Science Series, Natural History Museum of Los Angeles County40: 15–60.Google Scholar
  18. Goin, F.J.;Case, J.A.;Woodburne, M.O.;Vizcaíno, S.F. &Reguero, M.A. 1999. New discoveries of ‘opossum-like’ marsupials from Antarctica (Seymour Island, Medial Eocene). — Journal of Mammalian Evolution6: 335–365.CrossRefGoogle Scholar
  19. Goin, F.J.;Oliveira, E.V. &Candela, A.M. 1998.Carolocoutoia ferigoloi nov. gen. and sp. (Protodidelphidae), a new Paleocene ‘Opossum-like’ marsupial from Brazil. — Palaeovertebrata27: 145–154.Google Scholar
  20. Gordon, C.L. 2003. A first look at estimating body size in dentally conservative marsupials. — Journal of Mammalian Evolution10: 1–21.CrossRefGoogle Scholar
  21. Gunnell, G.F.;Jacobs, B.F.;Herendeen, P.S.;Head, J.J.;Kowalski, E.;Msuya, C.P.;Mizambwa, F.A.;Harrison, T.;Habersetzer, J. &Storch, G. 2003. Oldest placental mammal from Sub-Saharan Africa: Eocene microbat from Tanzania — evidence for early evolution of sophisticated echolocation. — Palaeontologia Electronica5: Scholar
  22. Hartenberger, J.-L. &Marandat, B. 1992. A new genus and species of an early Eocene primate from North Africa. — Human Evolution7: 9–16.CrossRefGoogle Scholar
  23. Holroyd, P.A.;Simons, E.L.;Bown, T.M.;Polly, P.D. &Kraus, M.J. 1996. New records of terrestrial mammals from the upper Eocene Qasr el Sagha Formation, Fayum Depression, Egypt. — Palaeovertebrata25: 175–192.Google Scholar
  24. Hooker, J.J. 2001. Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. — Zoological Journal of the Linnean Society132: 501–529.CrossRefGoogle Scholar
  25. Hooker, J.J. &Weidmann, M. 2000. The Eocene mammal faunas of Mormont, Switzerland. — Schweizerische Paläontologische Abhandlungen120: 1–143.Google Scholar
  26. Hooker, J.J.;Sanchez-Villagra, M.R.;Goin, F.G.;Simons, E.L.;Attia, Y. &Seiffert, E.R. in press. The origin of Afro-Arabian “didelphimorph” marsupials. — Palaeontology.Google Scholar
  27. Illiger, C. 1811. Podromus systematis mammalium et avium additis terminis zoographicis utriudque classis. — xviii + 301 p., Berlin (C. Salfeld).Google Scholar
  28. Kirsch, J.A.W.;Lapointe, F.-J. &Springer, M.S. 1997. DNA-hybridisation studies of marsupials and their implications fo metatherian classification. — Australian Journal of Zoology45: 211–280.CrossRefGoogle Scholar
  29. Koenigswald, W. von 1988. Enamel modification in enlarged front teeth among mammals and the various possible reinforcements of the enamel. — In:Russell, D.E. &Sigogneau-Russell, D., eds., Teeth revisited. — Mémoires du Museum National d’Histoire Naturelle (C)53: 148–165.Google Scholar
  30. Koenigswald, W. von 1994. Differenzierungen im Zahnschmelz der Marsupialia im Vergleich zu den Verhältnissen bei den Placentalia (Mammalia). — In:Kohring, R. &Martin, T., eds., Festschrift Bernard Krebs. — Berliner Geowissenschaftliche Abhandlungen (E)13: 45–81.Google Scholar
  31. Koenigswald, W. von 1997. Evolutionary trends in the differentiation of mammalian enamel ultrastructure. — In:Koenigswald, W. von &Sander, P.M., eds., Tooth enamel microstructure: 203–235, Rotterdam (Balkema).Google Scholar
  32. Koenigswald, W. von &Clemens, W.A. 1992. Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. — Scanning Microscopy6: 195–218.Google Scholar
  33. Koenigswald, W. von &Goin, F.J. 2000. Enamel differentiation in South American marsupials and a comparison of placental and marsupial enamel. — Paleontographica (A)255: 129–168.Google Scholar
  34. Koenigswald, W. von;Rensberger, J.M. &Pfretzschner, H.U. 1987. Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. — Nature328: 150–152.CrossRefGoogle Scholar
  35. Korth, W.W. 1992. Fossil small mammals from the Harrison Formation (Late Arikareean: Earliest Miocene), Cherry County, Nebraska. — Annals Carnegie Museum61: 69–131.Google Scholar
  36. Krause, D.W. 2001. Fossil molar from a Madagascar marsupial. — Nature412: 497–498.CrossRefGoogle Scholar
  37. Lester, K.S. &Hand, S.J. 1987. Chiropteran enamel structure. — Scanning Microscopy1: 421–436.Google Scholar
  38. Lester, K.S.;Hand, S.J. &Vincent, F. 1988. Adult phyllostomid (bat) enamel by scanning electron microscopy with a note on dermopteran enamel. — Scanning Microscopy2: 371–383.Google Scholar
  39. Mahboubi, M.;Ameur, R.;Crochet, J.-Y. &Jaeger, J.J. 1986. El Kohol (Saharan Atlas, Algeria): A new Eocene mammal locality in northwestern Africa. — Palaeontographica (A)192: 15–49.Google Scholar
  40. Mahboubi, M.;Tabuce, R.;Mebrouk, F.;Coiffait, B.;Coiffait, P.-E. &Jaeger, J.-J. 2003. L’Éocène continental à vertébrés de la bordure Sud des Monts des Nementcha (Atlas saharien oriental, Algérie). Précisions stratigraphiques et implications paléobiogéographiques. — Bulletin du Service Géologique d’Algérie14: 27–35.Google Scholar
  41. Marshall, L.G.;Case, J.A. &Woodburne, M.O. 1990. Phylogenetic relationships of the families of marsupials. — In:Genoways, H.H., ed., Current mammalogy2: 433–502.Google Scholar
  42. McKenna, M.C. &Bell, S.K. 1997. Classification of mammals above the species level. — 640 p., New York (Columbia University Press).Google Scholar
  43. Muizon, C. de 1994. A new carnivorous marsupial from the Palaeocene of Bolivia and the problem of marsupial monophyly. — Nature370: 208–211.CrossRefGoogle Scholar
  44. Muizon, C. de &Cifelli, R.L. 2001. A new basal ‘didelphoid’ (Marsupialia, Mammalia) from the early Paleocene of Tiupampa (Bolivia). — Journal of Vertebrate Paleontology21: 87–97.CrossRefGoogle Scholar
  45. Pfretzschner, H.U. 1988. Structural reinforcement and crack propagation in enamel. — In:Russell, D.E.;Santoro, J.-P. &Sigogneau-Russell, D., eds., Teeth revisited: Proceedings of the 7th International Symposium on Dental Morphology, Paris 1986. — Mémoires du Muséum National d’Histoire Naturelle, Paris (C)53: 133–144.Google Scholar
  46. Rougier, G.W.;Wible, J.R. &Novacek, M.J. 1998. Implications ofDeltatheridium specimens for early marsupial history. — Nature396: 459–463.CrossRefGoogle Scholar
  47. Russell, D.E. &Savage, P. 1973. Chiroptera and Dermoptera of the French Early Eocene. — University of California Publications in Geological Sciences95: 1–57.Google Scholar
  48. Sánchez-Villagra, M.R.;Ladevèze, S.;Horovitz, I.;Argot, C.;Hooker, J.J.;Macrini, T.E.;Martin, T.;Moore-Fay, S.;Muizon, C. de;Schmelzle, T. &Asher, R.J. 2007. Exceptionally preserved North American Paleogene metatherians: adaptations and discovery of a major gap in the opossum fossil record. — Proceedings of the Royal Society, Biology Letters3: 318–322 (DOI: 10.1098/rsbl.2007.0090).Google Scholar
  49. Seiffert, E.R. 2006. Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. — Proceedings of the National Academy of Sciences, USA103: 5000–5005.CrossRefGoogle Scholar
  50. Seiffert, E.R.;Simons, E.L. &Attia, Y. 2003. Fossil evidence for an ancient divergence of lorises and galagos. — Nature422: 421–424.CrossRefGoogle Scholar
  51. Seiffert, E.R.;Simons, E.L.;Clyde, W.C.;Rossie, J.B.;Attia, Y.;Bown, T.M.;Chatrath, P. &Mathison, M.E. 2005. Basal anthropoids from Egypt and the antiquity of Africa’s higher primate radiation. — Science310: 300–304.CrossRefGoogle Scholar
  52. Sigé, B. 1985. Les Chiroptères oligocènes du Fayum, Egypte. — Geologica et Palaeontologica19: 161–189.Google Scholar
  53. Sigé, B. 1991. Rhinolophoidea et Vespertilionoidea (Chiroptera) du Chambi (Eocène inférieur de Tunisie). Aspects biostratigraphique, biogéographique et paléoécologique de l’origine des chiroptères modernes. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen182: 355–376.Google Scholar
  54. Sigé, B.;Thomas, H.;Sen, S.;Gheerbrant, E.;Roger, J. &Al-Sulaimani, Z. 1994. Les chiroptères de Taqah (Oligocène inférieur, Sultanat d’Oman). Premier inventaire systématique. — Münchner Geowissenschaftliche Abhandlungen26: 35–48.Google Scholar
  55. Simons, E.L. 1995. Egyptian Oligocene primates: A review. — Yearbook of Physical Anthropology38: 199–238.CrossRefGoogle Scholar
  56. Simons, E.L. &Rasmussen, D.T. 1990. Vertebrate paleontology of Fayum: History of research, faunal review and future prospects. — In:Said, R., ed. The geology of Egypt: 627–638, Rotterdam (A.A. Balkema Publishers).Google Scholar
  57. Smith, T. 1995. Presence of the genusWyonycteris (Mammalia, Lipotyphla) at the Paleocene-Eocene boundary of Europe. — Comptes Rendus de l’Académie des Sciences, Paris (II)321: 923–930.Google Scholar
  58. Storch, G. &Qiu, Z. 2002 First Neogene marsupial from China. — Journal of Vertebrate Paleontology22: 179–181.CrossRefGoogle Scholar
  59. Tabuce, R.;Mahboubi, M.;Tafforeau, P. &Sudre, J. 2004. Discovery of a highly-specialized plesiadapiform primate in the early-middle Eocene of northwestern Africa. — Journal of Human Evolution47: 305–321.CrossRefGoogle Scholar
  60. Thenius, E. 1989. Zähne und Gebiss der Säugetiere. — 513 p., Berlin (W. de Gruyter).Google Scholar
  61. Van Valen, L.M. 1966. Deltatheridia, a new order of mammals. — Bulletin of the American Museum of Natural History132: 1–126.Google Scholar
  62. Vianey-Liaud, M.;Jaeger J.-J.;Hartenberger, J.-L. &Mahboubi, M. 1994. Les rongeurs de l’Eocène d’Afrique nord-occidentale [Glib Zegdou (Algérie) et Chambi (Tunisie)] et l’origine des Anomaluridae. — Palaeovertebrata23: 93–118.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2007

Authors and Affiliations

  • Marcelo R. Sánchez-Villagra
    • 1
  • Erik R. Seiffert
    • 2
  • Thomas Martin
    • 3
  • Elwyn L. Simons
    • 4
  • Gregg F. Gunnell
    • 5
  • Yousry Attia
    • 6
  1. 1.Paläontologisches Institut und MuseumUniversität ZürichZürichSwitzerland
  2. 2.Department of Anatomical SciencesSchool of Medicine, Stony Brook UniversityStony BrookUSA
  3. 3.Institut für PaläontologieUniversität BonnBonnGermany
  4. 4.Department of Biological Anthropology & AnatomyDuke University, and Division of Fossil Primates, Duke Primate CenterDurhamUSA
  5. 5.Museum of PaleontologyUniveristy of MichiganAnn ArborUSA
  6. 6.Egyptian Geological Museum, Misr el Kadima, Ethar el NabiCairoEgypt

Personalised recommendations