Advertisement

Skeletal anatomy of the Late Cretaceous shark,Squalicorax (Neoselachii: Anacoracidae)

  • Kenshu Shimada
  • David J. Cicimurri
Article

Abstract

The paleobiology of the Cretaceous neoselachian shark,Squalicorax, has largely been based on isolated teeth. We examined partial and nearly complete skeletons of three species ofSqualicorax, S. falcatus (Aoassiz),S. kaupi (Agassiz), andS. pristodontus (Agassiz), that were collected from the U.S.A. These specimens suggest that the total body length (TL) ofS. falcatus typically measured 1.8–2.0 m, and probably did not exceed 3 m. Moderatesized individuals ofS. kaupi andS. pristodontus perhaps measured about 3 m TL. AlthoughS. pristodontus was the largest form among the three species examined, this taxon possessed a set of large jaws (with large but fewer teeth) relative to its body size compared toS. falcatus orS. kaupi. This suggests that tooth size is not an accurate indicator of the TL if one compares oneSqualicorax species to another. Neurocranial features suggest that the vision ofSqualicorax was not as acute as that of a contemporaneous macrophagous lamniform shark,Cretoxyrhina mantelli (Agassiz) , but olfaction ofSqualicorax may have been better thanC. mantelli. The morphology of placoid scales suggests thatSqualicorax was capable of fast swimming. New skeletal data support the view that the feeding dynamics ofSqualicorax was similar to the modern tiger shark (Galeocerdo Müller & Henle). The present data do not allow for exact ordinal placement, but, contrary to some previous interpretations,Squalicorax can be excluded from the Hexanchiformes and Orectolobiformes. The taxon should more appropriately be placed within the Lamniformes or Carcharhiniformes.

Keywords

Anacoracidae Chondrichthyes Elasmobranchii North America paleobiology Squalicorax Upper Cretaceous 

Kurzfassung

Bisher basierte die Kenntnis zur Paläobiologie des kretazischen NeoselachiersSqualicorax weitgehend auf isolierten Zähnen. Neue Untersuchungen an fast vollständigen sowie Teil-Skeletten von drei Arten der GattungSqualicorax (S.falcatus (Agassiz),S. kaupi (Agassiz) undS. pristodontus (Agassiz)) aus verschiedenen Gebieten der U.S.A. zeigen, dass die Gesamtkörperlänge vonS. falcatus im Durchschnitt 1,8–2,0 m betrug und wahrscheinlich 3 m nicht überschritt. Mittelgroße Individuen vonS. kaupi undS. pristodontus maßen vermutlich etwa 3 m Gesamtlänge.S. pristodontus war die größte der drei untersuchten Arten und besaß verglichen mitS. falcatus oderS. kaupi im Verhältnis zur Gesamtkörpergröße relativ große Kieferknochen mit großen Zähnen, jedoch in einer geringeren Anzahl. Es zeigt sich, dass im Vergleich der Arten untereinander die Zahngröße kein besonders gutes Indiz zur Rekonstruktion der Gesamtkörperlänge ist. Merkmale des Neurocraniums belegen, dass das Sehvermögen vonSqualicorax nicht so scharf war wie das des zeitgleich lebenden makrophagen lamniformen HaisCretoxyrhina mantelli (Agassiz), jedoch der Geruchssinn vonSqualicorax möglicherweise besser ausgebildet war als beiC. mantelli. Die Morphologie der Placoidschuppen deutet an, dassSqualicorax ein schneller Schwimmer war. Neue Daten zur Skelett-Morphologie bestätigen die Ansicht, dass das Fressverhalten vonSqualicorax dem des rezenten Tigerhais (Galeocerdo Muller & Henle) ähnelte. Die vorliegenden Daten geben keine genauen Hinweise zur systematischen Einordnung vonSqualicorax, allerdings kann eine Eingruppierung in die Hexanchiformes und Orectolobiformes, im Gegensatz zu früheren Ansichten, ausgeschlossen werden; eine Zuordnung zu den Lamniformes oder Carcharhiniformes kommt eher in Betracht.

Schlüsselwörter

Anacoracidae Chondrichthyes Elasmobranchii Nord-Amerika Paläobiologie Squalicorax Ober-Kreide 

References

  1. Agassiz, L. 1843. Reserches sur les poissons fossils (5 volumes: 1833–1843). — 1420 p., Neuchatel (Imprimerie de Patitpierre).Google Scholar
  2. Applegate, S.P. 1967. A survey of shark hard parts. — In:Gilbert, P.W.;Mathewson, R.F. &Rall, D.P., eds., Sharks, Skates, and Rays: 37–67. Baltimore (Johns Hopkins University Press).Google Scholar
  3. Applegate, S.P. 1970. The vertebrate fauna of the Selma Formation of Alabama. Part 8: The fishes. — Fieldiana: Geology Memoirs3: 383–433.Google Scholar
  4. Applegate, S.P. 1972. A revision of the higher taxa of orectolobids. — Journal of the Marine Biological Association of India14: 743–751.Google Scholar
  5. Berg, L.S. 1958. System der Rezenten und fossilen Fischartigen und Fische. — 310 p., Berlin (Hochschulbücher für Biologie).Google Scholar
  6. Bertin, L. &Arambourg, C. 1958. Systematique des Poissons. — In:Grasse, P., ed., Traité de Zoologie, 13, 3: 1967–1983, Paris (Libraries de l’Academie de Medecine).Google Scholar
  7. Bilelo, M.A.M. 1969. The fossil shark GenusSqualicorax in north-central Texas. — Texas Journal of Science20: 339–348.Google Scholar
  8. Blot, J. 1969. Holocephales et Elasmobranches. Systematique. — In:Piveteau, J., ed., Traité de Paléontologie, 4, 2: 702–776, Paris (Masson).Google Scholar
  9. Burris, J.H. 2001. Reworked Cretaceous elasmobranch teeth and provenance of the Paleocene Hanna Formation (Hanna Basin, Wyoming). — Rocky Mountain Geology36: 37–48.CrossRefGoogle Scholar
  10. Cappetta, H. 1973. Selachians from the Carlile Shale (Turonian) of South Dakota. — Journal of Paleontology47: 504–514.Google Scholar
  11. Cappetta, H. 1977. Observations sur quelques selaciens du Cretace superieur d’Angleterre avec la description d’un genre nouveau. — Geobios10: 479–485.CrossRefGoogle Scholar
  12. Cappetta, H. 1980. Les selaciens du Cretace superieur du Liban. 1. Requins. — Palaeontographica (A)168: 69–148.Google Scholar
  13. Cappetta, H. 1987. Chondrichthyes 2: Mesozoic and Cenozoic Elasmobranchii. — In:Schultze, H.-P., ed., Handbook of Paleoichthyology, 3B: 1–193, Stuttgart (G. Fischer).Google Scholar
  14. Cappetta, H. &Case, G.R. 1975. Selaciens nouveaux du Cretace du Texas. — Géobios8: 303–307.CrossRefGoogle Scholar
  15. Cappetta, H. &Case, G.R. 1999. Additions aux faunes de selaciens du Cretace du Texas (Albien superieur — Campanien). — Palaeo Ichthyologica9: 5–111.Google Scholar
  16. Cappetta, H.;Duffin, C. &Zidek, J. 1993. Chondrichthyes. — In:Benton, M.J., ed., The Fossil Record, 2: 593–609, London (Chapman and Hall).Google Scholar
  17. Carvalho, M.R. de 1996. Higher-level elasmobranch phylogeny, basal squaleans, and paraphyly. — In:Stiassny, M.L.J.;Parenti, L.R. &Johnson, G.D., eds., Interrelationships of Fishes: 35–62, San Diego (Academic Press).CrossRefGoogle Scholar
  18. Case, G.R. 1979. Cretaceous selachians from the Peedee Formation (Late Maestrichtian) of Duplin County, North Carolina. — Brimleyana2: 77–89.Google Scholar
  19. Casier, E. 1947. Constitution et evolution de la racine dentaire des Euselachii, II. Etude comparative des types. — Bulletin du Musée Royal d’Histoire Naturelle de Belgique23: 1–32.Google Scholar
  20. Cicimurri, D.J. 2001. Fossil selachians from the Belle Fourche Shale (Cretaceous, Cenomanian), Black Hills Region of South Dakota and Wyoming. — Mountain Geologist38: 181–192.Google Scholar
  21. Cigala-Fulgosi, F. &Mori, D. 1979. Osservazioni tassonomiche sul genereGaleocerdo (Selachii, Carcharhinidae) con particolare riferimento aGaleocerdo cuvieri (Peron & Lesueur) nel Pliocene del Mediterranee. — Bollettino della Societa Paleontologica Italianal8: 117–132.Google Scholar
  22. Compagno, L.J.V. 1973. Interrelationships of living elasmobranchs. — In:Greenwood, P.H.;Miles, R.S. &Patterson, C, eds., Interrelationships of Fishes: 15–61, London (Zoological Journal of Linnean Society of London53).Google Scholar
  23. Compagno. L.J.V. 1977. Phyletic relationships of living sharks and rays. — American Zoologist17: 303–322.Google Scholar
  24. Compagno, L.J.V. 1984. FAO species catalogue, 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. — FAO Fisheries Synopsis 1254: 1–655.Google Scholar
  25. Compagno, L.J.V. 1988. Sharks of the Order Carcharhiniformes. — 486 p., New Jersey (Princeton University Press).Google Scholar
  26. Compagno, L.J.V. 1990. Relationships of the megamouth shark,Megachasma pelagios (Lamniformes: Megachasmidae), with comments on its feeding habits. — NOAA Technical Report NMFS90: 357–379.Google Scholar
  27. Compagno, L.J.V. 1999a. Endoskeleton. — In:Hamlett, W.C., ed., Sharks, Skates, and Rays: The Biology of Elasmobranch Fishes: 69–92, Baltimore (Johns Hopkins University Press).Google Scholar
  28. Compagno, L.J.V. 1999b. Checklist of living elasmobranchs. — In:Hamlett, W.C., ed., Sharks, Skates, and Rays: The Biology of Elasmobranch Fishes: 471–498, Baltimore (Johns Hopkins University Press).Google Scholar
  29. Dingerkus, G. 1986. Interrelationships of orectolobiform sharks (Chondrichthyes: Selachii). — In:Uyeno, T.;Arai; R., Taniuchi, T. &Matsuura, K., eds., Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes: 227–245, Tokyo (Ichthyological Society of Japan).Google Scholar
  30. Dixon, F. 1850. The Geology and Fossils of the Tertiary and Cretaceous Formations of Sussex. — 408 p., London (Longman, Brown, Green, and Longman).Google Scholar
  31. Druckenmiller, P.S.;Daun, A.J.;Skulan, J.L. &Pladziewicz, J.C. 1993. Stomach contents in the Upper Cretaceous sharkSqualicorax falcatus. — Journal of Vertebrate Paleontology13 (Supplement to Number 3): 33A-34A.Google Scholar
  32. Fowler, H.W. 1911. A description of the fossil fish remains of the Cretaceous, Eocene and Miocene formations of New Jersey. — Bulletin of the Geological Survey of New Jersey4: 22–192.Google Scholar
  33. Frazzetta, T.H. 1994. Feeding Mechanisms in sharks and other elasmobranchs. — Advances in Comparative and Environmental Physiology18: 31–57.Google Scholar
  34. Frickhinger, K.A. 1995. Fossil Atlas, Fishes [translated byJefferies, R.P.S.]. — 1088 p., Blacksburg, Virginia (Tetra Press).Google Scholar
  35. Glikman, L.S. 1958. [Rates of evolution in lamnoid sharks]. — Doklady Akademia Nauk SSSR123: 568–571 [in Russian].Google Scholar
  36. Glikman, L.S. 1964. [Sharks of the Paleogene and Their Stratigraphie Significance]. — 229 p., Moscow-Leningrad (Nauka Press) [in Russian].Google Scholar
  37. Glikman, L.S. 1967. Subclass Elasmobranchii (sharks). — In:Orlov, Y.A., ed., Fundamentals of Paleontology,11: 292–352, Jerusalem (Israel Program for Scientific Translations).Google Scholar
  38. Glikman, L.S. 1980. [Evolution of Cretaceous and Cenozoic Lamnoid Sharks]. — 228 p., Moscow (Akademia Nauk USSR) [in Russian].Google Scholar
  39. Glikman, L.S. &Shvazhaite, R.A. 1971. [Sharks of the family Anacoracidae from Cenomanian and Turonian of Lithuania, Pre-Volga’s Region and Middle Asia]. Paleontologiia i Stratigraphiia Pribatltiki Belorussii3: 185–192 [in Russian with English summary].Google Scholar
  40. Gottfried, M.D.;Compagno, L.J.V. &Bowman, S.C. 1996. Size and skeletal anatomy of the giant “megatooth” sharkCarcharodon megalodon. — In:Klimley, A.p. &Alnley, D .G., eds., Great White Sharks: The Biology ofCarcharodon carcharias: 55–66, San Diego (Academic Press).CrossRefGoogle Scholar
  41. Gregory, W.K. 1951a. Evolution Emerging: A Survey of Changing Patterns from Primitive Life to Man. 1. — 736 p., New York (Mac-Millan Company).Google Scholar
  42. Gregory, W.K. 1951b. Evolution Emerging: A Survey of Changing Patterns from Primitive Life to Man. 2. — 1013 p., New York (MacMillan Company).Google Scholar
  43. Gunnerus, J.E. 1765. Brugden (Squalus maximus), Beskrevnen ved. — Kongelige norske Videnskabers selskab Skrifter Trondheim, Norway3: 33–49.Google Scholar
  44. Hamm, S.A.;Shimada, K. &Everhart, M.J. 2003. Three uncommon lamniform sharks from the Smoky Hill Chalk (Upper Cretaceous) of western Kansas. — Abstract Kansas Academy of Science22: 30–31.Google Scholar
  45. Herman, J. 1977 [1975]. Les selaciens des terrains neocretaces et paleocenes de Belgique et des contrees limitrophes. Elements d’une biostratigraphique intercontinentale. — Memoires pour servir a l’explication des Cartes Geologiques et Minieres de la Belgique15: 1–401 (Service Geologique de Belgique),Google Scholar
  46. Janvier, P. &Welcomme, J.-L. 1969. Affinites et Paleobiologie de l’especeCarcharodon megalodon Ag. Squale geant des Faluns de la Touraine et de l’Anjou. — Revue de la Féderation Française des Sociétés de Sciences Naturelles (3)8 (34): 1–6.Google Scholar
  47. Garrick, D.S. 1898. Description of a species of fish (Mitsukurirm owstonï) from Japan, the type of a distinct family of lamnoid sharks. — Proceedings of the California Academy of Science (Zoology) (3)1 (6): 199–202.Google Scholar
  48. Kriwet, J. &Oppermann, K. 1997. First articulated shark remains (Neoselachii, Lamniformes, Anacoracidae) from the Late Cretaceous of Spain. — Journal of Vertebrate Paleontology17 (Supplement to Number 3): 58A.Google Scholar
  49. Lauginiger, E.M. 1986. An Upper Cretaceous vertebrate assemblage from Big Brook, New Jersey. — Mosasaur3: 53–61.Google Scholar
  50. Lauginiger, E.M. 1988. Cretaceous Fossils from the Chesapeake and Delaware Canal: A Guide for Students and Collectors. — Delaware Geological Survey, Special Publication18: 1–56.Google Scholar
  51. Leriche, M. 1902. Revision de la faune ichthyologique des terrains cretaces du Nord de la France. — Annales de la Société Géologique du Nord31: 87–154.Google Scholar
  52. Leriche, M. 1906. Contribution a l’etude des poissons fossiles du nord de la France et des regions voisines. — Memoires de la Société Géologique du Nord5: 1–430.Google Scholar
  53. Leriche, M. 1929. Les poissons du Cretace marin de la Belgique et du Limbourg hollandais. — Bulletin de la Société Belge de Géologie, de Paléontologie et d’Hydrologie37: 199–299.Google Scholar
  54. Maisey, J.G. 1983. Cranial anatomy ofHybodus basanus Egerton from the Lower Cretaceous of England. — American Museum Novitates2758: 1–64.Google Scholar
  55. Maisey, J.G. 1984. Higher elasmobranch phylogeny and biostratigraphy. — Zoological Journal of the Linnean Society82: 33–54.CrossRefGoogle Scholar
  56. Martin, J.E.;Schumacher, B.A.;Parris, D.C. &Grandstaff, B.S. 1998. Fossil vertebrates of the Niobrara Formation in South Dakota. — Dakoterra5: 39–54.Google Scholar
  57. Meyer, R.L. 1974. Late Cretaceous elasmobranchs from the Mississippi and East Texas embayments of the Gulf Coastal Plain. — 419 p., Dallas, Texas (Southern Methodist University, Ph.D. dissertation).Google Scholar
  58. Moss, S.A. 1972. The feeding mechanism of sharks of the family Carcharhinidae. — Journal of Zoology167: 423–436.CrossRefGoogle Scholar
  59. Moss, S.A. 1977. Feeding mechanisms in sharks. — American Zoologist17: 355–364.Google Scholar
  60. Motta, P.J. &Wilga, C.A.D. 1995. Anatomy of the feeding apparatus of the lemon shark,Negaprion brevirostris. — Journal of Morphology226: 309–329.CrossRefGoogle Scholar
  61. Motta, P.J. &Wilga, C.D. 2001. Advances in the study of feeding behaviors, mechanisms, and mechanics of sharks. — Environmental Biology of Fishes60: 131–156.CrossRefGoogle Scholar
  62. Muller, J. &Henle, F.G.J. 1837. Ueber die Gattungen der Plagiostomen. — Archiv für Naturgeschichte3: 394–401.Google Scholar
  63. Noubhani, A. &Cappetta, H. 1997. Les Orectolobiformes, Carcharhiniformes et Myliobatiformes (Elasmobranchii, Neoselachii) des Bassins à phosphate du Maroc (Maastrichtien-Lutétien basal). — Paleo Ichthyologica8: 1–327.Google Scholar
  64. Priem, F. 1897. Sur des dents d’Elasmobranches de divers gisements senoniens (Villedieu, Moudon, Folxles-Caves). — Bulletin de la Société Géologique de France3: 40–56.Google Scholar
  65. Randall, J.E. 1992. Review of the biology of the tiger shark (Galeocerdo cuvier). — Australian Journal of Marine and Freshwater Research43: 21–31.CrossRefGoogle Scholar
  66. Raschi, W. &Elsom, J. 1986. Comments on the structure and development of the drag-reduction-type placoid scale. — In:Uyeno, T.;Arai, R.;Taniuchi, T. &Matsuura, K., eds., Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes: 408–424, Tokyo (Ichthyological Society of Japan).Google Scholar
  67. Raschi, W. &Tabit, C. 1992. Functional aspects of placoid scales: a review and update. — Australian Journal of Marine and Freshwater Research43: 123–147.CrossRefGoogle Scholar
  68. Reif, W.E. &Dinkelacker, A. 1982. Hydrodynamics of the squamation in fast swimming sharks. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen164: 184–187.Google Scholar
  69. Rothschild, B.M. &Martin, L.D. 1993. Paleopathology: Disease in the Fossil Record. — 400 p., Boca Raton, Florida (CRC Press).Google Scholar
  70. Rozefelds, A.C. 1993. Lower Cretaceous Anacoracidae? (Lamniformes: Neoselachii); vertebrae and associated dermal scales from Australia. — Alcheringa ##: 199–210.Google Scholar
  71. Schwimmer, D.R. 1997. Late Cretaceous dinosaurs in Eastern USA: a taphonomic and biogeographic model of occurrences. — Dinofest International Proceedings 203–211.Google Scholar
  72. Schwimmer, D.R.;Stewart, J.D. &Williams, G.D. 1997. Scavenging by sharks of the genusSqualicorax in the Late Cretaceous of North America. — Palaios12: 71–83.CrossRefGoogle Scholar
  73. Shimada, K. 1994. Jaws of the Late Cretaceous shark,Squalicorax kaupi, from western Kansas. — Journal of Morphology220: 393.Google Scholar
  74. Shimada, K. 1997a. Paleoecological relationships of the Late Cretaceous lamniform shark,Cretoxyrhina mantelli (Agassiz). — Journal of Paleontology71: 926–933.Google Scholar
  75. Shimada, K. 1997b. Skeletal anatomy of the Late Cretaceous lamniform shark,Cretoxyrhina mantelli, from the Niobrara Chalk in Kansas. — Journal of Vertebrate Paleontology17: 642–652.Google Scholar
  76. Shimada, K. 2002. Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii). — Journal of Morphology251: 38–72.CrossRefGoogle Scholar
  77. Shimada, K. &Hooks, G.E., III. 2004. Shark-bitten protostegid turtles from the Upper Cretaceous Mooreville Formation of Alabama. — Journal of Paleontology78: 205–210.CrossRefGoogle Scholar
  78. Shirai, S. 1992. Squalean phylogeny: A new framework of “squaloid” sharks and related taxa. — 151 p. (plus 58 plates), Sapporo (Hokkaido University Press).Google Scholar
  79. Shirai, S. 1996. Phylogenetic interrelationships of neoselachians (Chondrichthyes: Euselachii). — InStiassny, M.L.J.;Parenti, L.R. &Johnson, G.D., eds., Interrelationships of Fishes: 9–34, San Diego (Academic Press).CrossRefGoogle Scholar
  80. Shourd, M.L. &Winter, H.F. 1980. Paleocene megafossils from southeastern Missouri. — Journal of Paleontology54: 832–839.Google Scholar
  81. Siverson, M. 1992. Biology, dental morphology and taxonomy of lamniform sharks from the Campanian of the Kristianstad Basin, Sweden. — Palaeontology35: 519–554.Google Scholar
  82. Siverson, M. 1996. Lamniform sharks of the mid Cretaceous Alinga Formation and Beedagong Claystone, western Australia. — Palaeontology39: 813–849.Google Scholar
  83. Springer, S. 1961. Dynamics of the feeding mechanism of large galeoid sharks. — American Zoologist1: 183–185.Google Scholar
  84. Springer, V.G. &Garrick, J.A.F. 1964. A survey of vertebral numbers in sharks. — United States National Museum Proceedings116: 73–96.Google Scholar
  85. Stewart, J.D. 1978. Enterospirae (fossil intestines) from the Upper Cretaceous Niobrara Formation of western Kansas. — University of Kansas Paleontological Contributions89: 9–16.Google Scholar
  86. Stewart, J.D. 1993. The case of the sword-swallowing shark. — Terra31: 42–43.Google Scholar
  87. Strömer, E. 1927. Ergebnisse der Forschungsreisen Prof. E. Strömers in den Wüsten Ägypten. 2. Wirbeltier-Reste der Baharije-Stufe (Unterstes Cenoman). 9. Die Plagiostomen mit einem Anhang über Käno- und mesozoische Rückenflossenstacheln von Elasmobranchiern. — Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung (N.F.)31 (5): 1–64.Google Scholar
  88. Taylor, L.R.;Compagno, L.J.V. &Struhsaker, P.J. 1983. Megamouth — a new species, genus, and family of lamnoid shark (Megachasma pelagios. Family Megachasmidae) from the Hawaiian Islands. — Proceedings of the California Academy of Sciences43: 87–110.Google Scholar
  89. Thies, D. &Reif, W.-E. 1985. Phylogeny and evolutionary ecology of Mesozoic Neoselachii. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen169: 333–361.Google Scholar
  90. Thomson. K.S. &Simanek, D.E. 1977. Body form and locomotion in sharks. — American Zoologist17: 343–354.Google Scholar
  91. Walker, C. &Ward, D. 1992. Fossils. — 320 p., New York (Dorling Kindersley Publishing Book).Google Scholar
  92. Welton, B.J. &Farish, R.F. 1993. The Collector’s Guide to Fossil Sharks and Rays from the Cretaceous of Texas. — 204 p., Lewisvile, Texas (Before Time).Google Scholar
  93. Wiley. E.O. &Stewart, J.D. 1977. A gar (Lepisosteus sp.) from the marine Cretaceous Niobrara Formation of western Kansas. — Copeia1977: 761–762.CrossRefGoogle Scholar
  94. White, E.G. 1936. A classification and phylogeny of the elasmobranch fishes. — American Museum Novitates837: 1–16.Google Scholar
  95. White, E.G. 1937. Interrelationships of the elasmobranchs with a key to the order Galea. — Bulletin of the American Museum of Natural History74: 25–118.Google Scholar
  96. Whitley, G.P. 1939. Taxonomic notes on sharks and rays. — Australian Journal of Zoology9 (3): 227–262.Google Scholar
  97. Wllga, C.D.;Hueter, R.E.;Wainwright, P.C. &Motta, P.J. 2001. Evolution of upper jaw protrusion mechanisms in elasmobranchs. — American Zoologist41: 1248–1257.CrossRefGoogle Scholar
  98. Williamson, T.E.;Kirkland, J.I. &Lucas, S.G. 1993. Selachians from the Greenhorn cyclothem (“Middle” Cretaceous: Cenomanian — Turanian), Black Mesa, Arizona, and the paleogeographic distribution of Late Cretaceous selachians. — Journal of Paleontology67: 447–474.Google Scholar
  99. Williamson, T.E.:Lucas, S.G. &Pence, R. 1989. Selachians from the Hosta Tongue of the Point Lookout Sandstone (Upper Cretaceous, Santonian), Central New Mexico. — New Mexico Geological Society, Guidebook40: 239–245.Google Scholar
  100. Wllliston, S.W. 1900. Cretaceous fishes: selachians and pycnodonts. — University of Kansas Geological Survey4: 237–256.Google Scholar
  101. Wolberg, D.L. 1985a. Selachians from the Late Cretaceous (Turanian) Atarque Sandstone Member, Tres Hermanos Formation, Sevilleta Grant, Socorro County, New Mexico. — New Mexico Geology7: 1–7.Google Scholar
  102. Wolberg, D.L. 1985b. Selachians from the Atarque Sandstone Member of the Très Hermanos Formation (Upper Cretaceous: Turanian), Sevilleta Grant near La Joya, Socorro County, New Mexico. — New Mexico Bureau of Mines and Mineral Resources Circular195: 7–19.Google Scholar
  103. Woodward, A.S. 1889. Catalogue of the fossil fishes in the British Museum (Natural History), London. — 474 p., London (British Museum).Google Scholar
  104. Woodward, A.S. 1909–1912. The Fossils of the English Chalk. — 264 p., London (Paleontological Society of London).Google Scholar
  105. Wu, E.H. 1994. Kinematic analysis of jaw protrusion in orectolobiform sharks: a new mechanism for jaw protrusion in elasmobranchs. — Journal of Morphology222: 175–190.CrossRefGoogle Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2005

Authors and Affiliations

  1. 1.Environmental Science Program and Department of Biological SciencesDePaul UniversityChicagoU.S.A.
  2. 2.Sternberg Museum of Natural HistoryFort Hays State UniversityHaysU.S.A.
  3. 3.Bob Campbell Geology MuseumClemson UniversityClemsonU.S.A.

Personalised recommendations