Biotechnology and Bioprocess Engineering

, Volume 10, Issue 5, pp 432–443

Design, optimization and validation of genomic DNA microarrays for examining theClostridium acetobutylicum transcriptome

  • Keith V. Alsaker
  • Carlos J. Paredes
  • Eleftherios T. Papoutsakis
Article

Abstract

Microarray technology has contributed significantly to the understanding of bacterial genetics and transcriptional regulation. One neglected aspect of this technology has been optimization of microarray-generated signals and quality of generated information. Full genome microarrays were developed forClostridium acetobutylicum through spotting of PCR products that were designed with minimal homology with all other genes within the genome. Using statistical analyses it is demonstrated that signal quality is significantly improved by increasing the hybridization volume, possibly increasing the effective number of transcripts available to bind to a given spot, while changes in labeled probe amounts were found to be less sensitive to improving signal quality. In addition to Q-RT-PCR, array validation was tested by examining the transcriptional program of a mutant (M5) strain lacking the pSOL1 178-gene megaplasmid relative to the wildtype (WT) strain. Under optimal conditions, it is demonstrated that the fraction of false positive genes is 1% when considering differentially expressed genes and 7% when considering all genes with signal above background. To enhance genomic-scale understanding of organismal physiology, using data from these microarrays we estimated that 40–55% of theC. acetobutylicum genome is expressed at any time during batch culture, similar to estimates made forBacillus subtilis.

Keywords

gram-positive solvent-production gene-expression sporulation heat-shock butanol degenerate strain extrachromosomal number-of-expressed-genes Spo0A AbrB diffusion limitation microarray design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ye, R. W., T. Wang, L. Bedzyk, and K. M. Croker (2001) Applications of DNA microarrays in microbial systems.J. Microbiol. Meth. 47: 257–272.CrossRefGoogle Scholar
  2. [2]
    Conway, T. and G. K. Schoolnik (2003) Microarray expression profiling: capturing a genome-wide portrait of the transcriptome.Mol. Microbiol. 47: 879–889.CrossRefGoogle Scholar
  3. [3]
    Rhodius, V. A. and R. A. LaRossa (2003) Uses and pitfalls of microarrays for studying transcriptional regulation.Curr. Opin. Microbiol. 6: 114–119.CrossRefGoogle Scholar
  4. [4]
    Dharmadi, Y. and R. Gonzalez (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems.Biotechnol. Progr. 20: 1309–1324.CrossRefGoogle Scholar
  5. [5]
    Jones, D. T. and D. R. Woods (1986) Acetone-butanol fermentation revisited.Microbiol. Rev. 50: 484–524.Google Scholar
  6. [6]
    Tomas, C. A., K. V. Alsaker, H. P. J. Bonarius, W. T. Hendriksen, H. Yang, J. A. Beamish, C. J. Parades, and E. T. Papoutsakis (2003) DNA-array based transcriptional analysis of asporogenous, non-solventogenicClostridium acetobutylicum strains SKO1 and M5.J. Bacteriol. 185: 4539–4547.CrossRefGoogle Scholar
  7. [7]
    Alsaker, K. V., T. R. Spitzer, and E. T. Papoutsakis (2004) Transcriptional analysis ofspo0A overexpression inClostridium acetobutylicum and its effect on the cell’s response to butanol stress.J. Bacteriol. 186: 1959–1971.CrossRefGoogle Scholar
  8. [8]
    Tomas, C. A., N. E. Welker, and E. T. Papoutsakis (2003) Overexpression ofgroESL inClostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and large changes in the cell’s transcriptional program.Appl. Environ. Microbiol. 69: 4951–4965.CrossRefGoogle Scholar
  9. [9]
    Tummala, S. B., S. G. Junne, C. J. Paredes, and E. T. Papoutsakis (2003) Transcriptional analysis of product-concentration driven changes in cellular programs of recombinantClostridium acetobutylicum strains.Biotechnol. Bioeng. 84: 842–854.CrossRefGoogle Scholar
  10. [10]
    Tomas, C. A., J. A. Beamish, and E. T. Papoutsakis (2004) Transcriptional analysis of butanol stress and tolerance inClostridium acetobutylicum.J. Bacteriol. 186: 2006–2018.CrossRefGoogle Scholar
  11. [11]
    Hegde, P., R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J. E. Hughes, E. Snesrud, N. Lee, and J. Quackenbush (2000) A concise guide to cDNA microarray analysis.Biotechniques 29: 548–562.Google Scholar
  12. [12]
    Yang, H., H. Haddad, C. Tomas, K. Alsaker, and E. T. Papoutsakis (2003) A segmental nearest neighbor normalization and gene identification method gives superior results for DNA-array analysis.P.Natl. Acad. Sci. USA 100: 1122–1127.CrossRefGoogle Scholar
  13. [13]
    Xu, D., G. S. Li, L. Y. Wu, J. Z. Zhou, and Y. Xu (2002) PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis.Bioinformatics 18: 1432–1437.CrossRefGoogle Scholar
  14. [14]
    Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic Local Alignment Search Tool.J. Mol. Biol. 215: 403–410.Google Scholar
  15. [15]
    Rozen, S. and H. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. pp 365–386. In: S. Krawetz, S. Misener, (eds.).Methods in Molecular Biology. Humana Press, Totowa, NJ.Google Scholar
  16. [16]
    Richmond, C. S., J. D. Glasner, R. Mau, H. F. Jin, and F. R. Blattner (1999) Genome-wide expression profiling inEscherichia coli K-12.Nucleic Acids Res. 27: 3821–3833.CrossRefGoogle Scholar
  17. [17]
    Raghavachari, N., Y. P. Bao, G. S. Li, X. Y. Xie, and U. R. Müller (2003) Reduction of autofluorescence on DNA microarrays and slide surfaces by treatment with sodium borohydride.Anal. Biochem. 312: 101–105.CrossRefGoogle Scholar
  18. [18]
    Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein (1998) Cluster analysis and display of genome-wide expression patterns.Proc. Natl. Acad. Sci. USA. 95: 14863–14868.CrossRefGoogle Scholar
  19. [19]
    Clark, S. W., G. N. Bennett, and F. B. Rudolph (1989) Isolation and characterization of mutants ofClostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase (EC 2.8.3.9) and in other solvent pathway enzymes.Appl. Environ. Microbiol. 55: 970–976.Google Scholar
  20. [20]
    Wiesenborn, D. P., F. B. Rudolph, and E. T. Papoutsakis (1988) Thiolase fromClostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents.Appl. Environ. Microbiol. 54: 2717–2722.Google Scholar
  21. [21]
    Tummala, S. B., N. E. Welker, and E. T. Papoutsakis (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway ofClostridium acetobutylicum.J. Bacteriol. 185: 1923–1934.CrossRefGoogle Scholar
  22. [22]
    Buday, Z., J. C. Linden, and M. N. Karim (1990) Improved acetone butanol fermentation analysis using subambient HPLC column temperature.Enzyme Microb. Tech. 12: 24–27.CrossRefGoogle Scholar
  23. [23]
    Wei, Y., J. M. Lee, C. Richmond, F. R. Blattner, J. A. Rafalski, and R. A. LaRossa (2001) High-density microarray-mediated gene expression profiling ofEscherichia coli.J. Bacteriol. 183: 545–556.CrossRefGoogle Scholar
  24. [24]
    Schena, M., D. Shalon, R. Heller, A. Chai, P. O. Brown, and R. W. Davis (1996) Parallel human genome analysis: microarray-based expression monitoring of 1,000 genes.Proc. Natl. Acad. Sci. USA 93: 10614–10619.CrossRefGoogle Scholar
  25. [25]
    Chhabra, S. R., K. R. Shockley, S. B. Conners, K. L. Scott, R. D. Wolfinger, and R. M. Kelly (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacteriumThermotoga maritima.J. Biol. Chem. 278: 7540–7552.CrossRefGoogle Scholar
  26. [26]
    Worley, J., K. Bechtol, S. Penn, D. Roach, D. Hanzel, M. Trounstine, and D. Barker (2000) A systems approach to fabricating and analyzing DNA microarrays. In: M. Schena, editor.Microarray Biochip Technology. Eaton Publishing, Natick, MA, USA.Google Scholar
  27. [27]
    Yuen, P. K., G. Li, Y. Bao, and U. R. Muller (2003) Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays.Lab Chip 3: 46–50.CrossRefGoogle Scholar
  28. [28]
    Adey, N. B., M. Lei, M. T. Howard, J. D. Jensen, D. A. Mayo, D. L. Butel, S. C. Coffin, T. C. Moyer, D. E. Slade, M. K. Spute, A. M. Hancock, G. T. Eisenhoffer, B. K. Dalley, and M. R. McNeely (2002) Gains in sensitivity with a device that mixes microarray hybridization solution in a 25-micron-thick chamber.Anal. Chem. 74: 6413–6417.CrossRefGoogle Scholar
  29. [29]
    Gadgil, C., A. Yeckel, J. J. Derby, and W. S. Hu (2004) A diffusion-reaction model for DNA microarray assays.J. Biotechnol. 114: 31–45.CrossRefGoogle Scholar
  30. [30]
    Borden, J. R., C. J. Paredes, and E. T. Papoutsakis (2005) Diffusion, mixing, and associated dye effects in DNA-microarray hybridizations.Biophys. J. In press.Google Scholar
  31. [31]
    Nölling, J., G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng, R. Gibson, H. M. Lee, J. Dubois, D. Qiu, J. Hitti, Y. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith (2001) Genome sequence and comparative analysis of the solvent-producing bacteriumClostridium acetobutylicum.J. Bacteriol. 183: 4823–4838.CrossRefGoogle Scholar
  32. [32]
    Cornillot, E., R. V. Nair, E. T. Papoutsakis, and P. Soucaille (1997) The genes for butanol and acetone formation inClostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain.J. Bacteriol. 179: 5442–5447.Google Scholar
  33. [33]
    Stim-Herndon, K. P., R. Nair, E. T. Papoutsakis, and G. N. Bennett (1996) Analysis of degenerate variants ofClostridium acetobutylicum ATCC 824.Anaerobe 2: 11–18.CrossRefGoogle Scholar
  34. [34]
    Tseng, G. C., M. K. Oh, L. Rohlin, J. C. Liao, and W. H. Wong (2001) Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects.Nucleic Acids Res. 29: 2549–2557.CrossRefGoogle Scholar
  35. [35]
    Harris, L. M., N. E. Welker, and E. T. Papoutsakis (2002) Northern, morphological, and fermentation analysis ofspo0A inactivation and overexpression inClostridium acetobutylicum ATCC 824.J. Bacteriol. 184: 3586–3597.CrossRefGoogle Scholar
  36. [36]
    Strauch, M. A., G. B. Spiegelman, M. Perego, W. C. Johnson, D. Burbulys, and J. A. Hoch (1989) The transition state transcription regulatorabrB ofBacillus subtilis is a DNA-binding protein.EMBO J. 8: 1615–1621.Google Scholar
  37. [37]
    Strauch, M., V. Webb, G. Spiegelman, and J. A. Hoch (1990) The Spo0A protein ofBacillus subtilis is a repressor of theabrB gene.Proc. Natl. Acad. Sci. USA 87: 1801–1805.CrossRefGoogle Scholar
  38. [38]
    Molle, V., M. Fujita, S. T. Jensen, P. Eichenberger, J. E. Gonzalez-Pastor, J. S. Liu, and R. Losick (2003) The Spo0A regulon ofBacillus subtilis.Mol. Microbiol. 50: 1683–1701.CrossRefGoogle Scholar
  39. [39]
    Scotcher, M. C., F. B. Rudolph, and G. N. Bennett (2005) Expression ofabrB310 andsinR, and effects of decreasedabrB310 expression on the transition from acidogenesis to solventogenesis, inClostridium acetobutylicum ATCC 824.Appl. Environ. Microbiol. 71: 1987–1995.CrossRefGoogle Scholar
  40. [40]
    Ravagnani, A., K. C. Jennert, E. Steiner, R. Grunberg, J. R. Jefferies, S. R. Wilkinson, D. I. Young, E. C. Tidswell, D. P. Brown, P. Youngman, J. G. Morris, and M. Young (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia.Mol. Microbiol. 37: 1172–1185.CrossRefGoogle Scholar
  41. [41]
    Helmann, J. D. and C. P. Moran Jr (2002) RNA polymerase and sigma factors. pp 289–312. In: A. L. Sonenshein, J. A. Hoch, R. Losick, (eds.),Bacillus subtilis and Its Closest Relatives: From Genes to Cells. ASM Press, Washington, D.C., USA.Google Scholar
  42. [42]
    Schaffer, S., N. Isci, B. Zickner, and P. Dürre (2002) Changes in protein synthesis and identification of proteins specifically induced during solventogenesis inClostridium acetobutylicum.Electrophoresis 23: 110–121.CrossRefGoogle Scholar
  43. [43]
    Eymann, C., A. Dreisbach, D. Albrecht, J. Bernhardt, D. Becher, S. Gentner, L. T. Tam, K. Büttner, G. Buurman, C. Scharf, S. Venz, U. Völker, and M. Hecker (2004) A comprehensive proteome map of growingBacillus subtilis cells.Proteomics 4: 2849–2876.CrossRefGoogle Scholar
  44. [44]
    Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno, and M. Hattori (2004) The KEGG resource for deciphering the genome.Nucleic Acids Res. 32: D277-D280.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Keith V. Alsaker
    • 1
  • Carlos J. Paredes
    • 1
  • Eleftherios T. Papoutsakis
    • 1
  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations